The thermoacoustic behavior of a combustion system can be determined numerically via acoustic tools such as Helmholtz solvers or network models coupled with a model for the flame dynamic response. Within such a framework, the flame response to flow perturbations can be described by a finite impulse response (FIR) model, which can be derived from large eddy simulation (LES) time series via system identification. However, the estimated FIR model will inevitably contain uncertainties due to, e.g., the statistical nature of the identification process, low signal-to-noise ratio, or finite length of time series. Thus, a necessary step toward reliable thermoacoustic stability analysis is to quantify the impact of uncertainties in FIR model on the growth rate of thermoacoustic modes. There are two practical considerations involved in this topic. First, how to efficiently propagate uncertainties from the FIR model to the modal growth rate of the system, considering it is a high dimensional uncertainty quantification (UQ) problem? Second, since longer computational fluid dynamics (CFD) simulation time generally leads to less uncertain FIR model identification, how to determine the length of the CFD simulation required to obtain satisfactory confidence? To address the two issues, a dimensional reduction UQ methodology called “Active subspace approach (ASA)” is employed in the present study. For the first question, ASA is applied to exploit a low-dimensional approximation of the original system, which allows accelerated UQ analysis. Good agreement with Monte Carlo analysis demonstrates the accuracy of the method. For the second question, a procedure based on ASA is proposed, which can serve as an indicator for terminating CFD simulation. The effectiveness of the procedure is verified in the paper.

References

References
1.
Nicoud
,
F.
,
Benoit
,
L.
,
Sensiau
,
C.
, and
Poinsot
,
T.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.
2.
Silva
,
C. F.
,
Emmert
,
T.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2015
, “
Numerical Study on Intrinsic Thermoacoustic Instability of a Laminar Premixed Flame
,”
Combust. Flame
,
162
(
9
), pp.
3370
3378
.
3.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach
,”
J. Fluid Mech.
,
719
, pp.
183
202
.
4.
Ndiaye
,
A.
,
Bauerheim
,
M.
, and
Nicoud
,
F.
,
2015
, “
Uncertainty Quantification of Thermoacoustic Instabilities on a Swirled Stabilized Combustor
,”
ASME
Paper No. GT2015-44133
.
5.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.
6.
Bauerheim
,
M.
,
Ndiaye
,
A.
,
Constantine
,
P.
,
Moreau
,
S.
, and
Nicoud
,
F.
,
2016
, “
Symmetry Breaking of Azimuthal Thermoacoustic Modes: The UQ Perspective
,”
J. Fluid Mech.
,
789
, pp.
534
566
.
7.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part II: Uncertainty Quantification
,”
J. Comput. Phys.
,
325
, pp.
411
421
.
8.
Silva
,
C.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2017
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p.
011901
.
9.
Blumenthal
,
R. S.
,
Subramanian
,
P.
,
Sujith
,
R.
, and
Polifke
,
W.
,
2013
, “
Novel Perspectives on the Dynamics of Premixed Flames
,”
Combust. Flame
,
160
(
7
), pp.
1215
1224
.
10.
Polifke
,
W.
,
2014
, “
Black-Box System Identification for Reduced Order Model Construction
,”
Ann. Nucl. Energy
,
67
, pp.
109
128
.
11.
Sovardi
,
C.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Concurrent Identification of Aero-Acoustic Scattering and Noise Sources at a Flow Duct Singularity in Low Mach Number Flow
,”
J. Sound Vib.
,
377
, pp.
90
105
.
12.
Guo
,
S.
,
Silva
,
C. F.
,
Bauerheim
,
M.
,
Ghani
,
A.
, and
Polifke
,
W.
,
2018
, “
Evaluating the Impact of Uncertainty in Flame Impulse Response Model on Thermoacoustic Instability Prediction: A Dimensionality Reduction Approach
,”
Proc. Combust. Inst.
(in press).
13.
Constantine
,
P.
,
Dow
,
E.
, and
Wang
,
Q.
,
2014
, “
Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces
,”
SIAM J. Sci. Comput.
,
36
(
4
), pp.
A1500
A1524
.
14.
Constantine
,
P. G.
,
2015
,
Active Subspaces: Emerging Ideas in Dimension Reduction for Parameter Studies
, Vol.
2
,
SIAM
,
Philadelphia, PA
.
15.
Lukaczyk
,
T. W.
,
Constantine
,
P. G.
,
Palacios
,
F.
, and
Alonso
,
J. J.
,
2014
, “
Active Subspaces for Shape Optimization
,”
AIAA
Paper No. 2014-1171
.
16.
Jefferson
,
J. L.
,
Gilbert
,
J. M.
,
Constantine
,
P. G.
, and
Maxwell
,
R. M.
,
2015
, “
Active Subspaces for Sensitivity Analysis and Dimension Reduction of an Integrated Hydrologic Model
,”
Comput. Geosci.
,
83
, pp.
127
138
.
17.
Constantine
,
P. G.
, and
Diaz
,
P.
,
2017
, “
Global Sensitivity Metrics From Active Subspaces
,”
Reliab. Eng. Syst. Saf.
,
162
, pp.
1
13
.
18.
Bodén
,
H.
, and
Polifke
,
W.
,
2015
, “
Uncertainty Quantification Applied to Aeroacoustic Predictions
,”
Progress in Simulation, Control and Reduction of Ventilation Noise
(VKI Lecture Series 2015),
C.
Schram
, ed., von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium.
19.
Keesman
,
K. J.
,
2011
, “
Time-Invariant System Identification
,”
System Identification
(Advanced Textbooks in Control and Signal Processing),
Springer
,
London
, pp.
59
167
.
20.
Tay-Wo-Chong
,
L.
,
Komarek
,
T.
,
Kaess
,
R.
,
Föller
,
S.
, and
Polifke
,
W.
,
2010
, “
Identification of Flame Transfer Functions From LES of a Premixed Swirl Burner
,”
ASME
Paper No.
GT2010-22769.
21.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.
22.
Emmert
,
T.
,
Bomberg
,
S.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2017
, “
Acoustic and Intrinsic Thermoacoustic Modes of a Premixed Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3835
3842
.
23.
Cowan
,
G.
,
1998
,
Statistical Data Analysis
,
1st ed.
,
Clarendon Press
, Gloucestershire, UK.
24.
Jaensch
,
S.
,
Merk
,
M.
,
Emmert
,
T.
, and
Polifke
,
W.
,
2018
, “
Identification of Flame Transfer Functions in the Presence of Intrinsic Thermoacoustic Feedback and Noise
,”
Combust. Theory Modell.
,
22
(
3
), pp.
613
634
.
25.
Tangirala
,
A. K.
,
2014
,
Principles of System Identification: Theory and Practice
,
CRC Press
,
Boca Raton, FL
.
26.
Avdonin
,
A.
, and
Polifke
,
W.
,
2018
, “
Quantification of the Impact of Uncertainties in Operating Conditions on the Flame Transfer Function With Non-Intrusive Polynomial Chaos Expansion
,”
ASME
Paper No. GT2018-75476
.
You do not currently have access to this content.