In modern turbomachine designs, the nominal clearances between rotating bladed-disks and their surrounding casing are reduced to improve aerodynamic performances of the engine. This clearance reduction increases the risk of contacts between components and may lead to hazardous interaction phenomena. A common technical solution to mitigate such interactions consists in the deposition of an abradable coating along the casing inner surface. This enhances the engine efficiency while ensuring operational safety. However, contact interactions between blade tips and an abradable layer may yield unexpected wear removal phenomena. The aim of this work is to investigate the numerical modeling of thermal effects within the abradable layer during contact interactions and compare it with experimental data. A dedicated thermal finite element mesh is employed. At each time-step, a weak thermo-mechanical coupling is assumed: thermal effects affect the mechanics of the system, but the mechanical deformation of the elements has no effect on temperatures. Weak coupling is well appropriated in the case of rapid dynamics using small time-step and explicit resolution schemes. Moreover, only heat transfer by conduction is considered in this work. To reduce computational times, a coarser spatial discretization is used for the thermal mesh comparing to the mechanical one. The time-step used to compute the temperature evolution is larger than the one used for the mechanical iterations since the time constant of thermal effect is larger than contact events. The proposed numerical modeling strategy is applied on an industrial blade to analyze the impact of thermal effects on the blade's dynamics.

References

References
1.
Williams
,
R. J.
,
2011
, “
Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching Method
,”
ASME
Paper No. GT2011-45495
.
2.
Muszynska
,
A.
,
Bently
,
D.
,
Franklin
,
W.
,
Hayashida
,
R.
,
Kingsley
,
L.
, and
Curry
,
A.
,
1989
, “
Influence of Rubbing on Rotor Dynamics—Part 1
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No.
NAS8-36179
.https://ntrs.nasa.gov/search.jsp?R=19890016092
3.
Borel
,
M.
,
Nicoll
,
A.
,
Schlapfer
,
H.
, and
Schmid
,
R.
,
1989
, “
The Wear Mechanisms Occurring in Abradable Seals of Gas Turbines
,”
Surf. Coat. Technol.
,
39
, pp.
117
126
.
4.
Mandard
,
R.
,
Witz
,
J.-F.
,
Boidin
,
X.
,
Fabis
,
J.
,
Desplanques
,
Y.
, and
Meriaux
,
J.
,
2015
, “
Interacting Force Estimation During Blade/Seal Rubs
,”
Tribol. Int.
,
82
, pp.
504
513
.
5.
Legrand
,
M.
,
Batailly
,
A.
, and
Pierre
,
C.
,
2011
, “
Numerical Investigation of Abradable Coating Removal Through Plastic Constitutive Law in Aircraft Engine
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011010
.
6.
Sinha
,
S. K.
,
2005
, “
Non-Linear Dynamic Response of a Rotating Radial Timoshenko Beam With Periodic Pulse Loading at the Free End
,”
Int. J. Nonlinear Mech.
,
40
(
1
), pp.
113
149
.
7.
Lesaffre
,
N.
,
Sinou
,
J. J.
, and
Thouverez
,
F.
,
2007
, “
Stability Analysis of Rotating Beams Rubbing on an Elastic Circular Structure
,”
J. Sound Vib.
,
299
(
4–5
), pp.
1005
1032
.
8.
Legrand
,
M.
,
Pierre
,
C.
,
Cartraud
,
P.
, and
Lombard
,
J. P.
,
2009
, “
Two-Dimensional Modeling of an Aircraft Engine Structural Bladed Disk-Casing Modal Interaction
,”
J. Sound Vib.
,
319
(
1–2
), pp.
366
391
.
9.
Salles
,
L.
,
Blanc
,
L.
,
Thouverez
,
F.
, and
Gouskov
,
A.
,
2010
, “
Dynamic Analysis of Fretting Wear in Friction Contact Interfaces
,”
Int. J. Solids Struct.
,
48
(
10
), pp.
1513
1524
.
10.
Baïz
,
S.
,
2011
, “
Etude Expérimentale du Contact Aube/Abradable: Contribution à la Caractérisation Mécanique Des Matériaux Abradables et de Leur Interaction Dynamique Sur Banc Rotatif Avec Une Aube
,” Ph.D. thesis, Ecole Centrale de Lille, Villeneuve-d'Ascq, France.
11.
Millecamps
,
A.
,
Brunel
,
J.
,
Dufrénoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2009
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. DETC2009-86842
.
12.
Delebarre
,
C.
,
Wagner
,
V.
,
Paris
,
J.-Y.
,
Dessein
,
G.
,
Denape
,
J.
, and
Santanach
,
J. G.
,
2017
, “
Tribological Characterization of a Labyrinth-Abradable Interaction in a Turbo Engine Application
,”
Wear
,
370–371
, pp.
29
38
.
13.
Mandard
,
R.
,
Desplanques
,
Y.
,
Hauss
,
G.
,
Fabis
,
J.
,
Witz
,
J.-F.
, and
Meriaux
,
J.
,
2015
, “
Mechanisms of Incursion Accommodation During Interaction Between a Vibrating Blade and an Abradable Coating
,”
Wear
,
330
(
Suppl. C
), pp.
406
418
.
14.
Agrapart
,
Q.
,
Dufrénoy
,
P.
,
Desplanques
,
Y.
,
Brunel
,
J.-F.
, and
Millecamps
,
A.
,
2017
, “
Modélisation Thermomécanique du Contact Aube-Abradable Dans Les Turboréacteurs
,” Congrès Français de Mécanique, Lille, France.
15.
Guérin
,
N.
,
Thouverez
,
F.
,
Gibert
,
C.
,
Legrand
,
M.
, and
Almeida
,
P.
,
2017
, “
Thermomechanical Component Mode Synthesis for Blade Casing Interaction Prediction
,”
ASME
Paper No. GT2017-64342
.
16.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2015
, “
Conjectural Bifurcation Analysis of the Contact-Induced Vibratory Response of an Aircraft Engine Blade
,”
J. Sound Vib.
,
348
(
Suppl. C
), pp.
239
262
.
17.
Batailly
,
A.
,
Agrapart
,
Q.
,
Millecamps
,
A.
, and
Brunel
,
J.-F.
,
2016
, “
Experimental and Numerical Simulation of a Rotor/Stator Interaction Event Within an Industrial High-Pressure Compressor
,”
J. Sound Vib.
,
375
, pp.
308
331
.
18.
Laursen
,
T.
,
2002
,
Computational Contact and Impact Mechanics
,
Springer
, Berlin.
19.
Wriggers
,
P.
,
2002
,
Computational Contact Mechanics
,
Wiley
, Hoboken, NJ.
20.
Sternchüss
,
A.
, and
Balmès
,
E.
,
2006
, “
On the Reduction of Quasi-Cyclic Disks With Variable Rotation Speeds
,”
International Conference on Advanced Acoustics and Vibration Engineering (ISMA)
, Leuven, Belgium, Sept. 18–20, pp.
3925
3939
.
21.
Adam
,
L.
,
2003
, “
Modélisation du Comportement Thermo-Élasto-Viscoplastique Des Métaux Soumis à Grandes Déformations. application au Formage Superplastique
,” Ph.D. thesis, Université de Liège, Liège, Belgium.
22.
Debard
,
Y.
,
2011
,
Méthode Des Éléments Finis: Thermique
,
Université du Mans
, France.
23.
Agrapart
,
Q.
,
Brunel
,
J.
,
Desplanques
,
Y.
,
Dufrenoy
,
P.
, and
Millecamps
,
A.
,
2017
, “
Modélisation Thermomécanique du Contact Aube-Abradable Dans Les Turboréacteurs
,”
23rd Edition of the Congrès Français de Mécanique
, pp. 1–8.
24.
Xue
,
W.
,
Gao
,
S.
,
Duan
,
D.
,
Zheng
,
H.
, and
Li
,
S.
,
2017
, “
Investigation and Simulation of the Shear Lip Phenomenon Observed in a High-Speed Abradable Seal for Use in Aero-Engines
,”
Wear
,
386–387
, pp.
195
203
.
You do not currently have access to this content.