The present paper numerically and experimentally investigates the stall inception mechanisms in a centrifugal compressor with volute. Current studies about stall inception pay more attention on the axial compressors than the centrifugal compressors; especially, the circumferential position of stall inception onset and the stall process in the centrifugal compressor with asymmetric volute structure have not been studied sufficiently yet. In this work, the compressor performance experiment was conducted and the casing wall static pressure distributions were obtained by 72 static pressure sensors first. Then, the full annular unsteady simulations were carried out at different stable operating points, and the time-averaged static pressure distributions were compared with the experimental results. Finally, the stall process of the compressor was investigated by unsteady simulations in detail. Results show that the stall inception onset is determined by the impeller leading edge (LE) spillage flow, and the occurrence time of trailing edge (TE) backflow is prior to the LE spillage. The nonuniform static pressure circumferential distribution at impeller outlet induced by volute tongue causes the two stall inception regions locating at certain circumferential positions, which are 120 deg and 300 deg circumferential positions at impeller LE, corresponding to the circumferential static pressure peak (PP) and bulge regions at impeller outlet, respectively. In detail, at rotor revolution 2.86, a small disturbance that the incoming/tip clearance flow interface is perpendicular to axial direction occurs at 120 deg position, but this disturbance did not cause the compressor stall. Then at revolution 7, the first stall inception zone (spillage region) occurs at 120 deg position, causing the compressor stall with positive pressure ratio performance. At approximately revolution 23, the second stall inception zone occurs at about 300 deg position; however, both the intensity and size of this stall inception zone are smaller than those of the first stall inception zone. These two stall inception zones are not moving along circumferential direction because the stall inception circumferential position is dominated by the impeller outlet static pressure distribution. Even then, the obvious low frequency signals appear after the spillage crossing two blade LEs, because at this moment, the spillage vortex caused by the tip leakage flow begins to shed. However, due to the asymmetric structure limitation, this vortex cannot move across full annular. Furthermore, the spillage vortexes cause the local low static pressure zone ahead of blade LE in the centrifugal compressor with volute, suggesting that the spillage can be predicted by the steady casing wall static pressure measuring. The development of blockage zones at impeller LE is also investigated quantitatively by analyzing the stall blockage effect.

References

References
1.
Emmons
,
H. W.
,
Pearson
,
C. E.
, and
Grant
,
H. P.
,
1955
, “
Compressor Surge and Stall Propagation
,”
ASME Trans.
,
127
(
2
), pp.
455
469
.https://www.mendeley.com/research-papers/compressor-surge-stall-propagation/
2.
Greitzer
,
E.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part I: Theoretical Compression System Model
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
190
198
.
3.
Greitzer
,
E.
,
1976
, “
Surge and Rotating Stall in Axial Flow Compressors—Part II: Experimental Results and Comparison With Theory
,”
ASME J. Eng. Gas Turbines Power
,
98
(
2
), pp.
199
211
.
4.
Garnier
,
V. H.
,
Epstein
,
A. H.
, and
Greitzer
,
E. M.
,
1991
, “
Rotating Waves as a Stall Inception Indication in Axial Compressors
,”
ASME J. Turbomach.
,
115
(
2
), pp.
290
302
.
5.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressor
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
6.
Camp
,
T. R.
, and
Day
,
I. J.
,
1998
, “
A Study of Spike and Modal Stall Phenomena in a Low-Speed Axial Compressor
,”
ASME J. Turbomach.
,
120
(
3
), pp.
393
401
.
7.
Hoying
,
D. A.
,
Tan
,
C. S.
,
Vo
,
H. D.
, and
Greitzer
,
E. M.
,
1999
, “
Role of Blade Passage Flow Structures in Axial Compressor Rotating Stall Inception
,”
ASME J. Turbomach.
,
121
(
4
), pp.
735
742
.
8.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), pp.
155
165
.
9.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
, and
Furukawa
,
M.
,
2000
, “
Propagation of Multiple Short-Length-Scale Stall Cells in an Axial Compressor Rotor
,”
ASME J. Turbomach.
,
122
(
1
), pp.
45
54
.
10.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Tanino
,
T.
,
Yoshida
,
S.
, and
Furukawa
,
M.
,
2001
, “
Comparative Studies on Short and Long Length-Scale Stall Cell Propagating in Axial Compressor Rotor
,”
ASME J. Turbomach.
,
123
(
1
), pp.
24
30
.
11.
Pullan
,
G.
,
Young
,
A.
,
Day
,
I.
,
Greitzer
,
E.
, and
Spakovszky
,
Z.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), pp.
2567
2579
.
12.
Young
,
A.
,
Day
,
I.
, and
Pullan
,
G.
, 2011, “
Stall Warning by Blade Pressure Signature Analysis
,”
ASME
Paper No. GT2011-45850.
13.
Yamada
,
K.
,
Kikuta
,
H.
,
Iwakiri
,
K.
,
Furukawa
,
M.
, and
Gunjishima
,
S.
,
2013
, “
An Explanation for Flow Features of Spike-Type Stall Inception in an Axial Flow Compressor Rotor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021023
.
14.
Marz
,
J.
,
Hah
,
C.
, and
Neise
,
W.
,
2002
, “
An Experimental and Numerical Investigation Into the Mechanisms of Rotating Instability
,”
ASME J. Turbomach.
,
124
(
3
), pp.
367
374
.
15.
Hah
,
C.
,
Bergner
,
J.
, and
Schiffer
,
H. P.
,
2008
, “
Tip Clearance Vortex Oscillation, Vortex Shedding and Rotating Instabilities in an Axial Transonic Compressor Rotor
,”
ASME
Paper No. GT2008-50105.
16.
Hah
,
C.
,
Voges
,
M.
,
Mueller
,
M. W.
, and
Schiffer
,
H. P.
,
2011
, “
Characteristics of Tip Clearance Flow Instability in a Transonic Compressor
,”
ASME
Paper No. GT2010-22101.
17.
Spakovszky
,
Z. S.
, and
Roduner
,
C. H.
,
2009
, “
Spikes and Modal Stall Inception in an Advanced Turbocharger Centrifugal Compressor
,”
ASME J. Turbomach.
,
131
(
3
), p.
031012
.
18.
Everitt
,
J. N.
, and
Spakovszky
,
Z. S.
,
2013
, “
An Investigation of Stall Inception in Centrifugal Compressor Vaned Diffuser
,”
ASME J. Turbomach.
,
135
(
1
), p.
011025
.
19.
Vagnoli
,
S.
, and
Verstraete
,
T.
,
2014
, “
Numerical Investigation of Inlet Distortion on the Stall Inception of a Radial Compressor
,”
ASME
Paper No. GT2014-25516.
20.
Vagnoli
,
S.
, and
Verstraete
,
T.
,
2015
, “
URANS Analysis of the Effect of Realistic Inlet Distortions on the Stall Inception of a Centrifugal Compressor
,”
Comput. Fluids
,
116
, pp.
192
204
.
21.
Bousquet
,
Y.
,
Binder
,
N.
,
Dufour
,
G.
,
Carbonneau
,
X.
, and
Roumeas
,
M.
,
2016
, “
Numerical Simulation of Stall Inception Mechanisms in Centrifugal Compressor With Vaned Diffuser
,”
ASME J. Turbomach.
,
138
(
12
), p.
121005
.
22.
Wang
,
L.
,
Lao
,
D.
,
Zhao
,
B.
,
Liu
,
H.
, and
Yang
,
C.
,
2015
, “
Influence of the U-Shape Pipe on a Centrifugal Compressor Performance
,”
J. Aerosp. Power
,
30
(
9
), pp.
2251
2260
.
23.
Harley
,
P.
,
Spence
,
S.
,
Filsinger
,
D.
,
Dietrich
,
M.
, and
Early
,
J.
,
2015
, “
Experimental and Numerical Benchmarking of an Improved Meanline Modeling Method for Automotive Turbocharger Centrifugal Compressors
,”
ASME
Paper No. GT2015-42175.
24.
Tamaki
,
H.
,
Unno
,
M.
,
Zheng
,
X.
, and
Zhang
,
Y.
,
2013
, “
Effect of Circumferential Static Pressure Non-Uniformity Caused by a Volute on Flow in High Pressure Ratio Centrifugal Compressor With Vaneless and Vaned Diffuser
,”
ASME
Paper No. GT2013-95263.
25.
Japikse
,
D.
, and
Krivitzky
,
E. M.
,
2016
, “
Radial Stages With Non-Uniform Pressures at Diffuser Inlet
,”
ASME
Paper No. GT2016-57956.
26.
Yang
,
M.
,
Zheng
,
X.
,
Zhang
,
Y.
,
Bamba
,
T.
,
Tamaki
,
H.
,
Huenteler
,
J.
, and
Li
,
Z.
,
2013
, “
Stability Improvement of High-Pressure-Ratio Turbocharger Centrifugal Compressor by Asymmetric Flow Control—Part I: Non-Axisymmetrical Flow in Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021006
.
27.
Yang
,
C.
,
Wang
,
Y.
,
Lao
,
D.
,
Wang
,
W.
, and
Yang
,
C.
,
2017
, “
Detailed Measurements of the Static Pressure Characteristics Around the Centrifugal Compressor Casing Wall
,”
J. Therm. Sci. Technol.
,
12
(
1
), p. JTST0009.
28.
Choi
,
M.
,
Smith
,
N. H. S.
, and
Vahdati
,
M.
,
2015
, “
Validation of Numerical Simulation for Rotating Stall in a Transonic Fan
,”
ASME J. Turbomach.
,
135
(
2
), p.
021004
.
29.
Cameron
,
J. D.
, and
Morris
,
S. C.
,
2013
, “
Analysis of Axial Compressor Stall Inception Using Unsteady Casing Pressure Measurements
,”
ASME J. Turbomach.
,
135
(
2
), p.
021036
.
30.
Weichert
,
S.
, and
Day
,
I.
,
2014
, “
Detailed Measurements of Spike Formation in an Axial Compressor
,”
ASME J. Turbomach.
,
136
(
5
), p.
051006
.
31.
Galloway
,
L.
,
Spence
,
S.
,
Rusch
,
D.
,
Vogel
,
K.
, and
Hunziker
,
R.
,
2018
, “
An Investigation of the Stability Enhancement of a Centrifugal Compressor Stage Using a Porous Throat Diffuser
,”
ASME J. Turbomach.
,
140
(
1
), p. 011008.
You do not currently have access to this content.