It may be generally believed that the thermoacoustic eigenfrequencies of a combustor with fully acoustically reflecting boundary conditions depend on both flame dynamics and geometry of the system. In this work, we show that there are situations where this understanding does not strictly apply. The purpose of this study is twofold. In the first part, we show that the resonance frequencies of two premixed combustors with fully acoustically reflecting boundary conditions in the region of marginal stability depend only on the parameters of the flame dynamics but do not depend on the combustor's geometry. This is shown by means of a parametric study, where the time delay and the interaction index of the flame response are varied and the resulting complex eigenfrequency locus is shown. Assuming longitudinal acoustics and a low Mach number, a quasi-1D Helmholtz solver is utilized. The time delay and interaction index of the flame response are parametrically varied to calculate the complex eigenfrequency locus. It is found that all the eigenfrequency trajectories cross the real axis at a resonance frequency that depends only on the time delay. Such marginally stable frequencies are independent of the resonant cavity modes of the two combustors, i.e., the passive thermoacoustic modes. In the second part, we exploit the aforementioned observation to evaluate the critical flame gain required for the systems to become unstable at four eigenfrequencies located in the marginally stable region. A computationally efficient method is proposed. The key ingredient is to consider both direct and adjoint eigenvectors associated with the four eigenfrequencies. Hence, the sensitivity of the eigenfrequencies to changes in the gain at the region of marginal stability is evaluated with cheap and accurate calculations. This work contributes to the understanding of thermoacoustic stability of combustors. In the same manner, the understanding of the nature of distinct resonance frequencies in unstable combustors may be enhanced by employing the analysis of the eigenfrequency locus here reported.

References

References
1.
Lieuwen
,
T.
, and
Yang
,
V.
, eds.,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
(Progress in Astronautics and Aeronautics), American Institute of Aeronautics and Astronautics, Reston, VA.
2.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(
1
), pp.
1
28
.
3.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.
4.
Kim
,
K.
,
Lee
,
J.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2010
, “
Spatially Distributed Flame Transfer Functions for Predicting Combustion Dynamics in Lean Premixed Gas Turbine Combustors
,”
Combust. Flame
,
157
(
9
), pp.
1718
1730
.
5.
Tay-Wo-Chong
,
L.
,
Bomberg
,
S.
,
Ulhaq
,
A.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2012
, “
Comparative Validation Study on Identification of Premixed Flame Transfer Function
,”
ASME J. Eng. Gas Turbines Power
,
134
(
2
), p.
021502
.
6.
Silva
,
C. F.
,
Emmert
,
T.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2015
, “
Numerical Study on Intrinsic Thermoacoustic Instability of a Laminar Premixed Flame
,”
Combust. Flame
,
162
(
9
), pp.
3370
3378
.
7.
Keller
,
J. J.
,
1995
, “
Thermoacoustic Oscillations in Combustion Chambers of Gas Turbines
,”
AIAA J.
,
33
(
12
), pp.
2280
2287
.
8.
Nicoud
,
F.
,
Benoit
,
L.
, and
Sensiau
,
C.
,
2007
, “
Acoustic Modes in Combustors With Complex Impedances and Multidimensional Active Flames
,”
AIAA J.
,
45
(
2
), pp.
426
441
.
9.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.
10.
Emmert
,
T.
,
Meindl
,
M.
,
Jaensch
,
S.
, and
Polifke
,
W.
,
2016
, “
Linear State Space Interconnect Modeling of Acoustic Systems
,”
Acta Acust. United with Acust.
,
102
(
5
), pp.
824
833
.
11.
Yi
,
T.
, and
Gutmark
,
E. J.
,
2008
, “
Online Prediction of the Onset of Combustion Instability Based on the Computation of Damping Ratios
,”
J. Sound Vib.
,
310
(
1–2
), pp.
442
447
.
12.
Crocco
,
L.
,
1951
, “
Aspects of Combustion Instability in Liquid Propellant Rocket Motors—Part I
,”
J. Am. Rocket Soc.
,
21
, pp.
163
178
.
13.
Crocco
,
L.
,
1952
, “
Aspects of Combustion Instability in Liquid Propellant Rocket Motors. Part II
,”
J. Am. Rocket Soc.
,
22
, pp.
7
16
.
14.
Poinsot
,
T.
, and
Veynante
,
D.
,
2012
,
Theoretical and Numerical Combustion
,
R. T. Edwards
.
15.
Hoeijmakers
,
M.
,
Kornilov
,
V. I.
,
Lopez Arteaga
,
A,. D P D G.
, and
Nijmeijer
,
H.
,
2014
, “
Intrinsic Instability of Flame-Acoustic Coupling
,”
Combust. Flame
,
161
(
11
), pp.
2860
2867
.
16.
Emmert
,
T.
,
Bomberg
,
S.
, and
Polifke
,
W.
,
2015
, “
Intrinsic Thermoacoustic Instability of Premixed Flames
,”
Combust. Flame
,
162
(
1
), pp.
75
85
.
17.
Courtine
,
E.
,
Selle
,
L.
, and
Poinsot
,
T.
,
2015
, “
DNS of Intrinsic Thermoacoustic Modes in Laminar Premixed Flames
,”
Combust. Flame
,
162
(
11
), pp.
4331
4341
.
18.
Silva
,
C. F.
,
Merk
,
M.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2017
, “
The Contribution of Intrinsic Thermoacoustic Feedback to Combustion Noise and Resonances of a Confined Turbulent Premixed Flame
,”
Combust. Flame
,
182
, pp.
269
278
.
19.
Mukherjee
,
N.
, and
Shrira
,
V.
,
2017
, “
Intrinsic Flame Instabilities in Combustors: Analytic Description of a 1-D Resonator Model
,”
Combust. Flame
,
185
, pp.
188
209
.
20.
Komarek
,
T.
, and
Polifke
,
W.
,
2010
, “
Impact of Swirl Fluctuations on the Flame Response of a Perfectly Premixed Swirl Burner
,”
ASME J. Eng. Gas Turbines Power
,
132
(
6
), p.
061503
.
21.
Albayrak
,
A.
,
Steinbacher
,
T.
,
Komarek
,
T.
, and
Polifke
,
W.
,
2017
, “
Convective Scaling of Intrinsic Thermo-Acoustic Eigenfrequencies of a Premixed Swirl Combustor
,”
ASME J. Eng. Gas Turbines Power
,
140
(4), p. 041510.
22.
Silva, C. F.
, and
Polifke, W.
, 2018, “
Non-Dimensional Groups for Similarity Analysis of Thermoacoustic Instabilities
,” 37th International Symposium on Combustion, The Combustion Institute, Pittsburgh, PA.
23.
Mensah, G. A.
,
Magri, L.
,
Silva, C. F.
,
Buschmann, P. E.
, and
Moeck, J. P.
, 2018, “
Exceptional Points in Thermoacoustic Spectra
,”
J. Sound Vib.
,
433
, pp. 124–128.
24.
Magri
,
L.
, and
Juniper
,
M. P.
,
2013
, “
Sensitivity Analysis of a Time-Delayed Thermo-Acoustic System Via an Adjoint-Based Approach
,”
J. Fluid Mech.
,
719
, pp.
183
202
.
25.
Magri
,
L.
,
Bauerheim
,
M.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part I: Sensitivity
,”
J. Comput. Phys.
,
325
, pp.
395
410
.
26.
Magri
,
L.
, and
Juniper
,
M. P.
,
2014
, “
Adjoint-Based Linear Analysis in Reduced-Order Thermo-Acoustic Models
,”
Int. J. Spray Combust. Dyn.
,
6
(
3
), pp.
225
246
.
27.
Silva
,
C.
,
Magri
,
L.
,
Runte
,
T.
, and
Polifke
,
W.
,
2017
, “
Uncertainty Quantification of Growth Rates of Thermoacoustic Instability by an Adjoint Helmholtz Solver
,”
ASME J. Eng. Gas Turbines Power
,
139
(
1
), p. 011901.
You do not currently have access to this content.