Buoyancy-induced flows occur in the rotating cavities of gas turbine internal air systems, and are particularly challenging to model due to their inherent unsteadiness. While the global features of such flows are well documented, detailed analyses of the unsteady structure and turbulent quantities have not been reported. In this work, we use a high-order numerical method to perform large-Eddy simulation of buoyancy-induced flow in a sealed rotating cavity with either adiabatic or heated disks. New insight is given into long-standing questions regarding the flow characteristics and nature of the boundary layers. The analyses focus on showing time-averaged quantities, including temperature and velocity fluctuations, as well as on the effect of the centrifugal Rayleigh number on the flow structure. Using velocity and temperature data collected over several revolutions of the system, the shroud and disk boundary layers are analyzed in detail. The instantaneous flow structure contains pairs of large, counter-rotating convection rolls, and it is shown that unsteady laminar Ekman boundary layers near the disks are driven by the interior flow structure. The shroud thermal boundary layer scales as approximately Ra1/3, in agreement with observations for natural convection under gravity.

References

References
1.
Chew
,
J. W.
, and
Hills
,
N. J.
,
2007
, “
Computational Fluid Dynamics for Turbomachinery Internal Air Systems
,”
Philos. Trans. R. Soc. London A: Math., Phys. Eng. Sci.
,
365
(
1859
), pp.
2587
2611
.
2.
Busse
,
F.
, and
Carrigan
,
C.
,
1974
, “
Convection Induced by Centrifugal Buoyancy
,”
J. Fluid Mech.
,
62
(
3
), pp.
579
592
.
3.
Bohn
,
D.
, and
Gorzelitz
,
V.
,
1994
, “
Experimental Investigations of Heat Transfer in a Gas-Filled Rotating Annulus
,”
ICHMT Digital Library Online
,
Begel House
, Danbury, CT.
4.
Bohn
,
D.
,
Deuker
,
E.
,
Emunds
,
R.
, and
Gorzelitz
,
V.
,
1995
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
117
(
1
), pp.
175
183
.
5.
Bohn
,
D.
,
Emunds
,
R.
,
Gorzelitz
,
V.
, and
Krüger
,
U.
,
1996
, “
Experimental and Theoretical Investigations of Heat Transfer in Closed Gas-Filled Rotating Annuli II
,”
ASME J. Turbomach.
,
118
, pp.
11
19
.
6.
Lloyd
,
J.
, and
Moran
,
W.
,
1974
, “
Natural Convection Adjacent to Horizontal Surface of Various Planforms
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
443
447
.
7.
Bohn
,
D.
, and
Gier
,
J.
,
1998
, “
The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli
,”
ASME J. Turbomach.
,
120
(
4
), pp.
824
830
.
8.
Bohn
,
D.
, and
Gier
,
J.
,
1998
, “
The Effect of Turbulence on the Heat Transfer in Closed Gas-Filled Rotating Annuli for Different Rayleigh Numbers
,”
ASME
Paper No. 98-GT-542.
9.
Sun
,
Z.
,
Kilfoil
,
A.
,
Chew
,
J. W.
, and
Hills
,
N. J.
,
2004
, “
Numerical Simulation of Natural Convection in Stationary and Rotating Cavities
,”
ASME
Paper No. GT2004-53528.
10.
King
,
M. P.
,
Wilson
,
M.
, and
Owen
,
J. M.
,
2007
, “
Rayleigh-Bénard Convection in Open and Closed Rotating Cavities
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
305
311
.
11.
Pitz
,
D. B.
,
Chew
,
J. W.
,
Marxen
,
O.
, and
Hills
,
N. J.
,
2017
, “
Direct Numerical Simulation of Rotating Cavity Flows Using a Spectral Element-Fourier Method
,”
ASME J. Eng. Gas Turbines Power
,
139
(
7
), p.
072602
.
12.
Pitz
,
D. B.
,
Marxen
,
O.
, and
Chew
,
J. W.
,
2017
, “
Onset of Convection Induced by Centrifugal Buoyancy in a Rotating Cavity
,”
J. Fluid Mech.
,
826
, pp.
484
502
.
13.
Atkins
,
N. R.
, and
Kanjirakkad
,
V.
,
2014
, “
Flow in a Rotating Cavity With Axial Throughflow at Engine Representative Conditions
,”
ASME
Paper No. GT2014-27174.
14.
Blackburn
,
H. M.
, and
Sherwin
,
S.
,
2004
, “
Formulation of a Galerkin Spectral Element–Fourier Method for Three-Dimensional Incompressible Flows in Cylindrical Geometries
,”
J. Comput. Phys.
,
197
(
2
), pp.
759
778
.
15.
Karniadakis
,
G.
, and
Sherwin
,
S.
,
2013
,
Spectral/Hp Element Methods for Computational Fluid Dynamics
,
Oxford University Press
,
Oxford, UK
.
16.
Karniadakis
,
G. E.
,
Israeli
,
M.
, and
Orszag
,
S. A.
,
1991
, “
High-Order Splitting Methods for the Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
97
(
2
), pp.
414
443
.
17.
Karamanos
,
G.
, and
Karniadakis
,
G. E.
,
2000
, “
A Spectral Vanishing Viscosity Method for Large-Eddy Simulations
,”
J. Comput. Phys.
,
163
(
1
), pp.
22
50
.
18.
Pasquetti
,
R.
,
2006
, “
Spectral Vanishing Viscosity Method for Large-Eddy Simulation of Turbulent Flows
,”
J. Sci. Comput.
,
27
(
1–3
), pp.
365
375
.
19.
Koal
,
K.
,
Stiller
,
J.
, and
Blackburn
,
H.
,
2012
, “
Adapting the Spectral Vanishing Viscosity Method for Large-Eddy Simulations in Cylindrical Configurations
,”
J. Comput. Phys.
,
231
(
8
), pp.
3389
3405
.
20.
Ahlers
,
G.
,
Grossmann
,
S.
, and
Lohse
,
D.
,
2009
, “
Heat Transfer and Large Scale Dynamics in Turbulent Rayleigh-Bénard Convection
,”
Rev. Mod. Phys.
,
81
(
2
), p.
503
.
21.
Kunnen
,
R.
,
Geurts
,
B.
, and
Clercx
,
H.
,
2009
, “
Turbulence Statistics and Energy Budget in Rotating Rayleigh–Bénard Convection
,”
Eur. J. Mech.-B/Fluids
,
28
(
4
), pp.
578
589
.
22.
Childs
,
P. R.
,
2010
,
Rotating Flow
,
Elsevier
, Amsterdam, The Netherlands.
23.
Cushman-Roisin
,
B.
, and
Beckers
,
J.-M.
,
2011
,
Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects
, Vol.
101
,
Academic Press
, Cambridge, MA.
24.
Verzicco
,
R.
, and
Camussi
,
R.
,
2003
, “
Numerical Experiments on Strongly Turbulent Thermal Convection in a Slender Cylindrical Cell
,”
J. Fluid Mech.
,
477
, pp.
19
49
.
25.
Niemela
,
J.
,
Skrbek
,
L.
,
Sreenivasan
,
K.
, and
Donnelly
,
R.
,
2000
, “
Turbulent Convection at Very High Rayleigh Numbers
,”
Nature
,
404
(
6780
), pp.
837
840
.
You do not currently have access to this content.