In this study, syngas combustion was investigated behind reflected shock waves in CO2 bath gas to measure ignition delay times (IDT) and to probe the effects of CO2 dilution. New syngas data were taken between pressures of 34.58–45.50 atm and temperatures of 1113–1275 K. This study provides experimental data for syngas combustion in CO2 diluted environments: ignition studies in a shock tube (59 data points in 10 datasets). In total, these mixtures covered a range of temperatures T, pressures P, equivalence ratios φ, H2/CO ratio θ, and CO2 diluent concentrations. Multiple syngas combustion mechanisms exist in the literature for modeling IDTs and their performance can be assessed against data collected here. In total, twelve mechanisms were tested and presented in this work. All mechanisms need improvements at higher pressures for accurately predicting the measured IDTs. At lower pressures, some of the models agreed relatively well with the data. Some mechanisms predicted IDTs which were two orders of magnitudes different from the measurements. This suggests that there is behavior that has not been fully understood on the kinetic models and is inaccurate in predicting CO2 diluted environments for syngas combustion. To the best of our knowledge, current data are the first syngas IDTs measurements close to 50 atm under highly CO2 diluted (85% per vol.) conditions.

References

References
1.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
,
2005
, “
Using Hydrogen as Gas Turbine Fuel
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
73
80
.
2.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
C.-J.
,
Herzler
,
J.
,
Naumann
,
C.
,
Griebel
,
P.
,
Mathieu
,
O.
,
Krejci
,
M. C.
,
Petersen
,
E. L.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(
6
), pp.
995
1011
.
3.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Massachusetts Institute of Technology, Cambridge, MA, Report No.
MIT-ANP-TR-100
.http://web.mit.edu/22.33/www/dostal.pdf
4.
Walton
,
S. M.
,
He
,
X.
,
Zigler
,
B. T.
, and
Wooldridge
,
M. S.
,
2007
, “
An Experimental Investigation of the Ignition Properties of Hydrogen and Carbon Monoxide Mixtures for Syngas Turbine Applications
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
3147
3154
.
5.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2011
, “
Shock Tube Study of Syngas Ignition in Rich CO2 Mixtures and Determination of the Rate of H + O2 + CO2 → HO2 + CO2
,”
Energy Fuels
,
25
(
3
), pp.
990
997
.
6.
Thi
,
L. D.
,
Zhang
,
Y.
, and
Huang
,
Z.
,
2014
, “
Shock Tube Study on Ignition Delay of Multi-Component Syngas Mixtures—Effect of Equivalence Ratio
,”
Int. J. Hydrogen Energy
,
39
(
11
), pp.
6034
6043
.
7.
Petersen
,
E. L.
,
Kalitan
,
D. M.
,
Barrett
,
A. B.
,
Reehal
,
S. C.
,
Mertens
,
J. D.
,
Beerer
,
D. J.
,
Hack
,
R. L.
, and
McDonell
,
V. G.
,
2007
, “
New Syngas/Air Ignition Data at Lower Temperature and Elevated Pressure and Comparison to Current Kinetics Models
,”
Combust. Flame
,
149
(
1–2
), pp.
244
247
.
8.
Koroglu
,
B.
,
Pryor
,
O. M.
,
Lopez
,
J.
,
Nash
,
L.
, and
Vasu
,
S. S.
,
2016
, “
Shock Tube Ignition Delay Times and Methane Time-Histories Measurements During Excess CO2 Diluted Oxy-Methane Combustion
,”
Combust. Flame
,
164
, pp.
152
163
.
9.
Koroglu
,
B.
,
Pryor
,
O.
,
Lopez
,
J.
,
Nash
,
L.
, and
Vasu
,
S. S.
,
2015
, “
Methane Ignition Delay Times in CO2 Diluted Mixtures in a Shock Tube
,”
AIAA
Paper No. 2015-4088.
10.
Pryor
,
O.
,
Barak
,
S.
,
Ninnemann
,
E.
, and
Vasu
,
S.
,
2017
, “
High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO2 Dilution
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042208
.
11.
Pryor
,
O. M.
,
Barak
,
S.
,
Koroglu
,
B.
,
Ninnemann
,
E.
, and
Vasu
,
S. S.
,
2017
, “
Measurements and Interpretation of Shock Tube Ignition Delay Times in Highly CO2 Diluted Mixtures Using Multiple Diagnostics
,”
Combust. Flame
,
180
, pp.
63
76
.
12.
Hargis
,
J. W.
, and
Petersen
,
E. L.
,
2015
, “
Methane Ignition in a Shock Tube With High Levels of CO2 Dilution: Consideration of the Reflected-Shock Bifurcation
,”
Energy Fuels
,
29
(
11
), pp.
7712
7726
.
13.
Barak
,
S.
,
Pryor
,
O.
,
Lopez
,
J.
,
Ninnemann
,
E.
,
Vasu
,
S.
, and
Koroglu
,
B.
,
2017
, “
High-Speed Imaging and Measurements of Ignition Delay Times in Oxy-Syngas Mixtures With High CO2 Dilution in a Shock Tube
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121503
.
14.
Ninnemann
,
E.
,
Koroglu
,
B.
,
Pryor
,
O.
,
Barak
,
S.
,
Nash
,
L.
,
Loparo
,
Z.
,
Sosa
,
J.
,
Ahmed
,
K.
, and
Vasu
,
S.
,
2018
, “
New Insights Into the Shock Tube Ignition of H2/O2 at Low to Moderate Temperatures Using High-Speed End-Wall Imaging
,”
Combust. Flame
,
187
(
Suppl. C
), pp.
11
21
.
15.
Loparo
,
Z. E.
,
Lopez
,
J. G.
,
Neupane
,
S.
,
Partridge
,
W. P.
,
Vodopyanov
,
K.
, and
Vasu
,
S. S.
,
2017
, “
Fuel-Rich n-Heptane Oxidation: A Shock Tube and Laser Absorption Study
,”
Combust. Flame
,
185
(
Suppl C
), pp.
220
233
.
16.
Gaydon
,
A. G. I. R. H.
,
1963
,
The Shock Tube in High-Temperature Chemical Physics
,
Reinhold
,
New York
.
17.
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2004
, “
Interpreting Shock Tube Ignition Data
,”
Int. J. Chem. Kinetics
,
36
(
9
), pp.
510
523
.
18.
Hall
,
J. M.
,
Rickard
,
M. J. A.
, and
Petersen
,
E. L.
,
2005
, “
Comparison of Characteristic Time Diagnostics for Igntion and Oxidation of Fuel/Oxidizer Mixtures Behind Reflected Shock Waves
,”
Combust. Sci. Technol.
,
177
(
3
), pp.
455
483
.
19.
Atkinson
,
R.
,
Perry
,
R. A.
, and
Pitts
,
J. N.
, Jr.
,
1977
, “
Absolute Rate Constants for the Reaction of OH Radicals With Allene, 1,3‐Butadiene, and 3‐Methyl‐1‐Butene Over the Temperature Range 299–424 °K
,”
J. Chem. Phys
,
67
(
7
), p.
3170
.
20.
Li
,
Y.
,
Zhou
,
C.-W.
,
Somers
,
K. P.
,
Zhang
,
K.
, and
Curran
,
H. J.
,
2017
, “
The Oxidation of 2-Butene: A High Pressure Ignition Delay, Kinetic Modeling Study and Reactivity Comparison With Isobutene and 1-Butene
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
403
411
.
21.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.
22.
Davis
,
S. G.
,
Joshi
,
A. V.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
,
2005
, “
An Optimized Kinetic Model of H2/CO Combustion
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1283
1292
.
23.
Smith, G. P.
,
Tao, Y.
, and
Wang, H.
, 2016, “
Foundational Fuel Chemistry Model Version 1.0 (FFCM-1)
,” epub, accessed July 26, 2018, http://nanoenergy.stanford.edu/ffcm1
24.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, and
Gardiner
,
W. C.
, Jr
.,
1999
, “
GRI-Mech 3.0
,” GRI-Mech, accessed July 26, 2018, http://combustion.berkeley.edu/gri-mech/
25.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinetics
,
39
(
3
), pp.
109
136
.
26.
Li
,
X.
,
You
,
X.
,
Wu
,
F.
, and
Law
,
C. K.
,
2015
, “
Uncertainty Analysis of the Kinetic Model Prediction for High-Pressure H2/CO Combustion
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
617
624
.
27.
Healy
,
D.
,
Kalitan
,
D. M.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2010
, “
Oxidation of C1−C5 Alkane Quinternary Natural Gas Mixtures at High Pressures
,”
Energy Fuels
,
24
(
3
), pp.
1521
1528
.
28.
Combustion Research Group, 2016, “
Mechanical and Aerospace Engineering, San Diego Mechanism, Version 2016-12-14
,” Chemical-Kinetic Mechanisms for Combustion Applications, University of California at San Diego, La Jolla, CA, accessed July 26, 2018, http://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html
29.
Wang, H.
,
You, X.
,
Joshi
,
A. V.
,
Davis
,
S. G.
,
Laskin
,
A.
,
Egolfopoulos
,
F.
, and
Law
,
C. K.
,
2007
, “
USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds
,” Combustion Kinetics Laboratory, Los Angeles, CA, epub, accessed July 26, 2018, http://ignis.usc.edu/USC_Mech_II.htm
30.
Varga
,
T.
,
Olm
,
C.
,
Nagy
,
T.
,
Zsély
,
I. G.
,
Valkó
,
É.
,
Pálvölgyi
,
R.
,
Curran
,
H. J.
, and
Turányi
,
T.
,
2016
, “
Development of a Joint Hydrogen and Syngas Combustion Mechanism Based on an Optimization Approach
,”
Int. J. Chem. Kinetics
,
48
(
8
), pp.
407
422
.
31.
Olm
,
C.
,
Zsély
,
I. G.
,
Varga
,
T.
,
Curran
,
H. J.
, and
Turányi
,
T.
,
2015
, “
Comparison of the Performance of Several Recent Syngas Combustion Mechanisms
,”
Combust. Flame
,
162
(
5
), pp.
1793
1812
.
32.
Ihme
,
M.
,
Sun
,
Y.
, and
Deiterding
,
R.
,
2013
, “
Detailed Simulations of Shock-Bifurcation and Ignition of an Argon-Diluted Hydrogen/Oxygen Mixture in a Shock Tube
,”
AIAA
Paper No. 2013-0538.
33.
Dryer
,
F. L.
, and
Chaos
,
M.
,
2008
, “
Ignition of Syngas/Air and Hydrogen/Air Mixtures at Low Temperatures and High Pressures: Experimental Data Interpretation and Kinetic Modeling Implications
,”
Combust. Flame
,
152
(
1–2
), pp.
293
299
.
34.
Yang
,
S.
,
Yang
,
X.
,
Wu
,
F.
,
Ju
,
Y.
, and
Law
,
C. K.
,
2017
, “
Laminar Flame Speeds and Kinetic Modeling of H2/O2/Diluent Mixtures at Sub-Atmospheric and Elevated Pressures
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
491
498
.
35.
Bates
,
R. W.
,
Golden
,
D. M.
,
Hanson
,
R. K.
, and
Bowman
,
C. T.
,
2001
, “
Experimental Study and Modeling of the Reaction H + O2 + M [Rightward Arrow] HO2 + M (M = Ar, N2, H2O) at Elevated Pressures and Temperatures Between 1050 and 1250 K
,”
Phys. Chem. Chem. Phys.
,
3
(
12
), pp.
2337
2342
.
36.
Hong
,
Z.
,
Davidson
,
D. F.
,
Barbour
,
E. A.
, and
Hanson
,
R. K.
,
2011
, “
A New Shock Tube Study of the H + O2 → OH + O Reaction Rate Using Tunable Diode Laser Absorption of H2O near 2.5 Μm
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
309
316
.
37.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.
You do not currently have access to this content.