One of the most important problems facing gas turbine designers today is the ingestion of hot mainstream gases into the wheel-space between the turbine disk (rotor) and its adjacent casing (stator). A rim seal is fitted at the periphery and a superposed sealant flow—typically fed through the bore of the stator—is used to prevent ingress. The majority of research studies investigating ingress do so in the absence of any leakage paths that exist throughout the engine's architecture. These inevitable pathways are found between the mating interfaces of adjacent pieces of hardware. In an environment where the turbine is subjected to aggressive thermal and centrifugal loading, these interface gaps can be difficult to predict and the resulting leakage flows which pass through them even harder to account for. This paper describes experimental results from a research facility which experimentally models hot gas ingestion into the wheel-space of an axial turbine stage. The facility was specifically designed to incorporate leakage flows through the stator disk; leakage flows were introduced axially through the stator shroud or directly underneath the vane carrier ring. Measurements of CO2 gas concentration, static pressure, and total pressure were used to examine the wheel-space flow structure with and without ingress from the mainstream gas-path. Data are presented for a simple axial-clearance rim-seal. The results support two distinct flow-structures, which are shown to be dependent on the mass-flow ratio of bore and leakage flows. Once the leakage flow was increased above a certain threshold, the flow structure is shown to transition from a classical Batchelor-type rotor-stator system to a vortex-dominated structure. The existence of a toroidal vortex immediately inboard of the outer rim-seal is shown to encourage ingestion.

References

References
1.
Rolls-Royce
,
2005
,
The Jet Engine
,
5th ed.
,
Rolls-Royce plc
,
London
.
2.
Cocca
,
A. M.
,
Stappenbeck
,
A.
, and
Van Wormer
,
J.
,
1996
, “
GE MS7001 Gas Turbine Advanced Technology Update
,”
ASME
Paper No. 96-GT-13.http://proceedings.asmedigitalcollection.asme.org/data/conferences/asmep/82231/v004t10a009-96-gt-013.pdf
3.
Mohammed-Fakir
,
A.-A.
,
Safi
,
A.
,
Kellock
,
I. R.
,
Itzel
,
G. M.
, and
Arness
,
B. P.
,
2003
, “
Supplemental Seal for the Chordal Hinge Seals in a Gas Turbine
,” U.S. Patent No. US 6,637,753 B2.
4.
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Review of Ingress in Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
120801
.
5.
Bunker
,
R. S.
,
2007
, “
Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges
,”
ASME J. Turbomach.
,
129
(
2
), pp.
193
201
.
6.
Andreini
,
A.
,
Da Soghe
,
R.
, and
Facchini
,
B.
,
2010
, “
Turbine Stator Well CFD Studies: Effects of Coolant Supply Geometry on Cavity Sealing Performance
,”
ASME J. Turbomach.
,
133
(
2
), p.
021008
.
7.
Palafox
,
P.
,
Ding
,
Z.
,
Bailey
,
J.
,
Vanduser
,
T.
,
Kirtley
,
K.
,
Moore
,
K.
, and
Chupp
,
R.
,
2013
, “
A New 1.5-Stage Turbine Wheelspace Hot Gas Ingestion Rig (HGIR)—Part I: Experimental Test Vehicle, Measurement Capability and Baseline Results
,”
ASME
Paper No. GT2013-96020
.
8.
Ding
,
Z.
,
Palafox
,
P.
,
Moore
,
K.
,
Chupp
,
R.
, and
Kirtley
,
K.
,
2013
, “
A New 1.5-Stage Turbine Wheelspace Hot Gas Ingestion Rig (HGIR)—Part II: CFD Modeling and Validation
,”
ASME
Paper No. GT2013-96021.
9.
Clark
,
K.
,
Barringer
,
M.
,
Johnson
,
D.
,
Thole
,
K.
,
Grover
,
E.
, and
Robak
,
C.
,
2017
, “
Effects of Purge Flow Configuration on Sealing Effectiveness in a Rotor-Stator Cavity
,”
ASME
Paper No. GT2017-63910.
10.
Zhang
,
F.
,
Wang
,
X.
,
Li
,
J.
, and
Zheng
,
D.
,
2017
, “
Numerical Investigation on the Effect of Radial Location of Sealing Air Inlet and Its Geometry on the Sealing Performance of a Stator-Well Cavity
,”
Int. J. Heat Mass Transfer
,
115
(
B
), pp.
820
832
.
11.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Zhou
,
K.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 1: Externally Induced Ingress
,”
ASME J. Turbomach.
,
135
(
2
), p.
021012
.
12.
Cho
,
G.
,
Sangan
,
C. M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Effect of Ingress on Turbine Discs
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042502
.
13.
Owen
,
J. M.
,
Wu
,
K.
,
Scobie
,
J. A.
,
Sangan
,
C. M.
,
Cho
,
G.
, and
Lock
,
G. D.
,
2014
, “
Use of Pressure Measurements to Determine Effectiveness of Turbine Rim Seals
,”
ASME J. Eng. Gas Turbines Power
,
137
(
3
), p.
032510
.
14.
Mear
,
L. I.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2016
, “
Theoretical Model to Determine Effect of Ingress on Turbine Disks
,”
ASME J. Eng. Gas Turbines Power
,
138
(
3
), p.
032502
.
15.
Halila
,
E. E.
,
Lenahan
,
D. T.
, and
Thomas
,
T. T.
,
1982
, “
High Pressure Turbine Test Hardware Detailed Design Report
,” National Aeronautics and Space Administration, Washington, DC, Technical Report No. NASA-CR-167955.
16.
Owen
,
J. M.
, and
Rogers
,
R. H.
,
1989
,
Flow and Heat Transfer in Rotating-Disc Systems: Rotor-Stator Systems
, Vol.
1
,
Research Studies Press
,
Taunton, UK
.
17.
Sangan
,
C. M.
,
Pountney
,
O. J.
,
Scobie
,
J. A.
,
Wilson
,
M.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2013
, “
Experimental Measurements of Ingestion Through Turbine Rim Seals—Part 3: Single and Double Seals
,”
ASME J. Turbomach.
,
135
(
5
), p.
051011
.
18.
Childs
,
P. R. N.
,
2011
,
Rotating Flow
,
Butterworth-Heinemann
,
Oxford, UK
.
19.
Sangan
,
C. M.
,
Lalwani
,
Y.
,
Owen
,
J. M.
, and
Lock
,
G. D.
,
2014
, “
Fluid Dynamics of a Gas Turbine Wheel-Space With Ingestion
,”
IMechE J. Power Energy
,
228
(
5
), pp.
508
524
.
You do not currently have access to this content.