Resonant response of turbomachinery blades can lead to high cycle fatigue (HCF) if the vibration amplitudes are excessive. Accurate and reliable simulations of the forced response phenomenon require detailed CFD and FE models that may consume immense computational costs. In the present study, an alternative approach is applied, which incorporates nonlinear harmonic (NLH) CFD simulations in a one-way fluid–structure interaction (FSI) workflow for the prediction of the forced response phenomenon at reduced computational costs. Five resonance crossings excited by the stator in a radial inflow turbocharger turbine are investigated and the aerodynamic excitation and damping are predicted using this approach. Blade vibration amplitudes are obtained from a subsequent forced response analysis combining the aerodynamic excitation with aerodynamic damping and a detailed structural model of the investigated turbine rotor. A comparison with tip timing measurement data shows that all predicted values lay within the range of the mistuned blade response underlining the high quality of the utilized workflow.

References

References
1.
Müller
,
T. R.
,
Vogt
,
D. M.
,
Vogel
,
K.
,
Phillipsen
,
B. A.
, and
Hönisch
,
P.
,
2017
, “
Influence of Detailing on Aerodynamic Forcing of a Transonic Axial Turbine Stage and Forced-Response Prediction for Low-Engine-Order (LEO) Excitation
,”
ASME
Paper No. GT2017-64502
.
2.
Giles
,
M. B.
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power
,
4
(
4
), pp.
356
362
.
3.
Clark
,
J. P.
,
Stetson
,
G. M.
,
Magge
,
S. S.
,
Ni
,
R. H.
,
Haldemann
,
C. W.
, and
Dunn
,
M. G.
,
2000
, “
The Effect of Airfoil Scaling on the Predicted Unsteady Loading on the Blade of a 1 and 1/2 Stage Transonic Turbine and a Comparison With Experimental Results
,”
ASME
Paper No. 2000-GT-0446.
4.
Mayorca
,
M. A.
,
Andrade
,
J. A. D.
,
Vogt
,
D. M.
,
Mårtensson
,
H.
,
Laumert
,
B.
, and
Fransson
,
T.
,
2009
, “
Effect of Scaling of Blade Row Sectors on the Prediction of Aerodynamic Forcing in Highly-Loaded Transonic Compressor Stage
,”
ASME. J. Turbomach.
,
132
(
2
), p.
021013
.
5.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.
6.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
Am. Inst. Aeronaut. Astronaut.
,
36
(
11
), pp.
2005
2012
.
7.
Vilmin
,
S.
,
Lorrain
,
E.
,
Hirsch
,
C.
, and
Swoboda
,
M.
,
2006
, “
Unsteady Flow Modeling Across the Rotor/Stator Interface Using the Nonlinear Harmonic Method
,”
ASME
Paper No. GT2006-90210
.
8.
Vilmin
,
S.
,
Lorrain
,
E.
,
Tartinville
,
B.
,
Capron
,
A.
, and
Hirsch
,
C.
,
2013
, “
The Nonlinear Harmonic Method: From Single Stage to Multi-Row Effects
,”
Int. J. Comp. Fluid Dyn.
,
27
(
2
), pp.
88
99
.
9.
Nordwall
,
G.
,
Leduc
,
M.
, and
Demeulenaere
,
A.
,
2008
, “
Unsteady Blade and Disk Resonant Stress Analysis Due to Supersonic Inlet Guide Vane Wakes
,”
ASME
Paper No. GT2008-50865
.
10.
Marlier
,
J.
,
Barbieux
,
V.
, and
Tartinville
,
B.
,
2016
, “
Unsteady Rotating Radial Load of a Single Stage Radial Inflow Turbine
,”
ASME
Paper No. GT2016-56983
.
11.
Kovachev
,
N.
,
Müller
,
T. R.
,
Waldherr
,
C. U.
,
Esper
,
A.
,
Lenzen
,
C.
, and
Wunderlich
,
M.
,
2017
, “
Intermediate Report
,”
FVV Spring Conference
, Mar. 30–31, pp.
5
31
.
12.
Waldherr
,
C. U.
, and
Vogt
,
D. M.
,
2017
, “
A Comparison of Two Reduced Order Methods for Probabilistic Mistuning Investigations
,”
ASME
Paper No. GTINDIA2017-4684
.
13.
Mayorca
,
M. A.
,
Vogt
,
D. M.
,
Mårtensson
,
H.
,
Andersson
,
C.
, and
Fransson
,
T.
,
2012
, “
Uncertainty of Forced Response Numerical Predictions of an Industrial Blisk—Comparison With Experiments
,”
ASME
Paper No. GT2012-69534
.
14.
Allemang
,
R. J.
, and
Brown
,
D. L.
,
1982
, “
A Correlation for Modal Vector Analysis
,”
First International Modal Analysis Conference & Exhibit
, Orlando, FL, Nov. 8–10, pp.
110
116
.
15.
Mayorca
,
M. A.
,
2011
, “
Numerical Methods for Turbomachinery Aeromechanics Predictions
,”
Ph.D. thesis
, Royal Institute of Technology (KTH), Stockholm, Sweden.http://www.diva-portal.org/smash/get/diva2:457544/FULLTEXT01.pdf
You do not currently have access to this content.