Recent advances in practical engineering methods for fracture analysis of turbomachinery components are described. A comprehensive set of weight function (WF) stress intensity factor (SIF) solutions for elliptical and straight cracks under univariant and bivariant stress gradients has been developed and verified. Specialized SIF solutions have been derived for curved through cracks, cracks at chamfered and angled corners, and cracks under displacement control. Automated fracture models are available to construct fatigue crack growth (FCG) life contours and critical initial crack size (CICS) contours for all nodal locations in two-dimensional or three-dimensional (2D or 3D) finite element (FE) models.

References

References
1.
Rooke
,
D. P.
, and
Cartwright
,
D. J.
,
1976
,
Compendium of Stress Intensity Factors
,
HMSO
,
London
.
2.
Tada
,
H.
,
Paris
,
P. C.
, and
Irwin
,
G.
,
1973
,
The Stress Analysis of Cracks Handbook
,
Del Research Corporation
,
Hellertown, PA
.
3.
Enright
,
M. P.
,
Lee
,
Y.-D.
,
McClung
,
R. C. L.
,
Huyse
,
L.
,
Leverant
,
G. R.
,
Millwater
,
H. R.
, and
Fitch
,
S. K.
,
2003
, “
Probabilistic Surface Damage Tolerance Assessment of Aircraft Turbine Rotors
,”
ASME
Paper No. GT-2003-38731.
4.
McClung
,
R. C.
,
Enright
,
M. P.
,
Lee
,
Y.-D.
,
Huyse
,
L.
, and
Fitch
,
S.
,
2004
, “
Efficient Fracture Design for Complex Turbine Engine Components
,”
ASME
Paper No. GT-2004-53323.
5.
Glinka
,
G.
, and
Shen
,
G.
,
1991
, “
Universal Features of Weight Functions for Cracks in Mode I
,”
Eng. Fract. Mech.
,
40
(
6
), pp.
1135
1146
.
6.
Shen
,
G.
, and
Glinka
,
G.
,
1991
, “
Weight Functions for a Surface Semi-Elliptical Crack in a Finite Thickness Plate
,”
J. Theor. Appl. Fract. Mech.
,
15
(
3
), pp.
247
255
.
7.
Kiciak
,
A.
,
Glinka
,
G.
, and
Eman
,
M.
,
1998
, “
Weight Functions and Stress Intensity Factors for Corner Quarter-Elliptical Crack in Finite Thickness Plate Subjected to In-Plane Loading
,”
Eng. Fract. Mech.
,
60
(
2
), pp.
221
238
.
8.
Orynyak
,
I. V.
,
Borodii
,
M. V.
, and
Torop
,
V. M.
,
1994
, “
Approximate Construction of a Weight Function for Quarter-Elliptical, Semi-Elliptical and Elliptical Cracks Subjected to Normal Stresses
,”
Eng. Fract. Mech.
,
40
(
1
), pp.
143
151
.
9.
Orynyak
,
I. V.
, and
Borodii
,
M. V.
,
1995
, “
Point Weight Function Method Application for Semi-Elliptical Mode I Cracks
,”
Int. J. Fract.
,
70
(
2
), pp.
117
124
.
10.
Lee
,
Y.-D.
,
McClung
,
R. C.
, and
Chell
,
G. G.
,
2008
, “
An Efficient Stress Intensity Factor Solution Scheme for Corner Cracks at Holes Under Bivariant Stressing
,”
Fatigue Fract. Eng. Mater. Struct.
,
31
(
11
), pp.
1004
1016
.
11.
Fawaz
,
S. A.
,
1999
, “
Stress Intensity Factor Solutions for Part-Elliptical Through Cracks
,”
Eng. Fract. Mech.
,
63
(
2
), pp.
209
226
.
12.
Lanciotti
,
A.
, and
Polese
,
C.
,
2003
, “
Fatigue Crack Propagation of Through Cracks in Thin Sheets Under Combined Bending and Tension Stresses
,”
Fatigue Fract. Eng. Mater. Struct.
,
26
(
5
), pp.
421
428
.
13.
Huls
,
R. A.
,
Grooteman
,
F. P.
, and
Veul
,
R. P. G.
,
2013
, “
Stress Intensity Factor for a Center Through Crack in a Finite Width Plate Subjected to a Symmetric Remote Displacement Field
,” National Aerospace Laboratory NLR, Report No. NLR-CR-2012-222.
14.
Grooteman
,
F. P.
,
2016
, “
Stress Intensity Factor Solution for a Quarter Elliptical Corner Crack in a Finite Width Plate Subjected to a Bivariant Remote Displacement Field
,” National Aerospace Laboratory NLR, Report No. NLR-CR-2015-202-PT-1.
15.
McClung
,
R. C.
,
Lee
,
Y.-D.
,
Enright
,
M. P.
, and
Liang
,
W.
,
2014
, “
New Methods for Automated Fatigue Crack Growth and Reliability Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
062101
.
16.
Enright
,
M. P.
,
Moody
,
J. P.
, and
Sobotka
,
J. C.
,
2016
, “
Optimal Automated Risk Assessment of 3D Gas Turbine Engine Components
,”
ASME
Paper No. GT2016-58091.
17.
Enright
,
M. P.
,
McClung
,
R. C.
,
Sobotka
,
J. C.
,
Moody
,
J. P.
,
McFarland
,
J.
, and
Lee
,
Y.-D.
,
2018
, “
Influences of Non-Destructive Inspection Simulation on Fracture Risk Assessment of Additively Manufactured Turbine Engine Components
,”
ASME
Paper No. GT2018-77058.
18.
McClung
,
R. C.
,
Enright
,
M. P.
,
Moody
,
J. P.
,
Lee
,
Y.-D.
,
Sobotka
,
J. C.
,
Bhamidipati
,
V.
, and
McClure
,
J. W.
,
2017
, “
A Comprehensive Framework for Probabilistic Damage Tolerant Design of Aerospace Components
,” 35th ICAF Conference and 29th ICAF Symposium (ICAF 2017), Curran Associates, Inc., Red Hook, NY, pp. 1672–1681.
19.
McClung
,
R. C.
,
Wawrzynek
,
P.
,
Lee
,
Y.-D.
,
Carter
,
B. J.
,
Moody
,
J. P.
, and
Enright
,
M. P.
,
2016
, “
An Integrated Software Tool for High Fidelity Probabilistic Assessments of Metallic Aero-Engine Components
,”
ASME
Paper No. GT2016-57877.
You do not currently have access to this content.