Abstract

An experimental study is carried out to analyze the effects of swirl on the structure and stabilization of methane non-premixed oxygen-enriched flames above a coaxial injector in which the two streams are eventually swirled. The mean position of the flame and the liftoff height above the injector lips are investigated with OH* chemiluminescence images. The oxygen enrichment, the momentum flux ratio between the two coflows, the swirl level inside the central jet, and the swirl level in the annular jet are varied over a large range of operating conditions. It is found that, in the absence of swirl in the central stream, the flame is always attached to the lips of the internal injection tube. As the inner swirl level increases, the flame front located at the lips of the internal injection tube disappears. When the annular swirl level is high enough to create a central recirculating bubble, the flame detaches from the nozzle rim and remains lifted at a finite distance above the injector. Increasing the oxygen concentration shifts this transition to smaller momentum flux ratios and smaller annular swirl levels. The liftoff distance can be finely tuned and depends on the inner and outer swirl levels, and on the momentum flux ratio between the two coaxial streams. It is shown that this feature depends neither on the confinement of the injector nor on the thermal stress exerted by the hot burnt gases on the injector back plane. About 1000 configurations were investigated that could be classified into only four distinct stabilization modes, in which the flame structure was shown to follow a similar pathway when the momentum flux ratio between the two streams, the swirl level in the central and external streams, and the quarl angle of the annular stream are varied. It is finally shown how these limits are altered when the oxygen concentration in the annular oxidizer stream is varied from air to oxygen-enriched operation.

References

References
1.
De Persis
,
S.
,
Foucher
,
F.
,
Pillier
,
L.
,
Osorio
,
V.
, and
Gökalp
,
I.
,
2013
, “
Effects of O2 Enrichment and CO2 Dilution on Laminar Methane Flames
,”
Energy
,
55
, pp.
1055
1066
.10.1016/j.energy.2013.04.041
2.
Baukal
,
C. E.
, and
Gebhart
,
B.
,
1997
, “
Oxygen-Enhanced/Natural Gas Flame Radiation
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2539
2547
.10.1016/S0017-9310(96)00307-9
3.
Cieutat
,
D.
,
Sanchez-Molinero
,
I.
,
Tsiava
,
R.
,
Recourt
,
P.
,
Aimard
,
N.
, and
Prébendé
,
C.
,
2009
, “
The Oxy-Combustion Burner Development for the CO2 Pilot at Lacq
,”
Energy Procedia
,
1
(
1
), pp.
519
526
.10.1016/j.egypro.2009.01.069
4.
Toftegaard
,
M. B.
,
Brix
,
J.
,
Jensen
,
P. A.
,
Glarborg
,
P.
, and
Jensen
,
A. D.
,
2010
, “
Oxy-Fuel Combustion of Solid Fuels
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
581
625
.10.1016/j.pecs.2010.02.001
5.
Ivernel
,
A.
, and
Vernotte
,
P.
,
1979
, “
Etude Expérimentale de L'amélioration Des Transferts Convectis Dans Les Fours Par Suroxygénation du Comburant
,”
Rev. Gener. Therm.
,
18
(210–211), pp.
375
391
.
6.
Samaniego
,
J.
,
Labegorre
,
B.
,
Egolfopoulos
,
F.
,
Ditaranto
,
M.
,
Sautet
,
J.
, and
Charon
,
O.
,
1998
, “
Mechanism of Nitric Oxide Formation in Oxygen-Natural Gas Combustion
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
1385
1392
.10.1016/S0082-0784(98)80544-4
7.
Chen
,
R.
, and
Axelbaum
,
R.
,
2005
, “
Scalar Dissipation Rate at Extinction and the Effects of Oxygen-Enriched Combustion
,”
Combust. Flame
,
142
(
1–2
), pp.
62
71
.10.1016/j.combustflame.2005.02.008
8.
Boushaki
,
T.
,
Sautet
,
J.
,
Salentey
,
L.
, and
Labegorre
,
B.
,
2007
, “
The Behaviour of Lifted Oxy-Fuel Flames in Burners With Separated Jets
,”
Int. Commun. Heat Mass Transfer
,
34
(
1
), pp.
8
18
.10.1016/j.icheatmasstransfer.2006.09.008
9.
Yon
,
S.
, and
Sautet
,
J.-C.
,
2012
, “
Flame Lift-Off Height, Velocity Flow and Mixing of Hythane in Oxy-Combustion in a Burner With Two Separated Jets
,”
Appl. Therm. Eng.
,
32
, pp.
83
92
.10.1016/j.applthermaleng.2011.08.033
10.
Peters
,
N.
, and
Williams
,
F. A.
,
1983
, “
Liftoff Characteristics of Turbulent Jet Diffusion Flames
,”
AIAA J.
,
21
(
3
), pp.
423
429
.10.2514/3.8089
11.
Vanquickenborne
,
L.
, and
Van Tiggelen
,
A.
,
1966
, “
The Stabilization Mechanism of Lifted Diffusion Flames
,”
Combust. Flame
,
10
(
1
), pp.
59
69
.10.1016/0010-2180(66)90028-9
12.
Kalghatgi,
G.
,
1984
, “
Lift-Off Heights and Visible Lengths of Vertical Turbulent Jet Diffusion Flames in Still Air
,”
Combust. Sci. Technol.
,
41
(1–2), pp.
17
29
.10.1080/00102208408923819
13.
Ko
,
Y.
, and
Chung
,
S.
,
1999
, “
Propagation of Unsteady Tribrachial Flames in Laminar Non-Premixed Jets
,”
Combust. Flame
,
118
(
1–2
), pp.
151
163
.10.1016/S0010-2180(98)00154-0
14.
Buckmaster
,
J.
,
1996
, “
Edge-Flames and Their Stability
,”
Combust. Sci. Technol.
,
115
(
1–3
), pp.
41
68
.10.1080/00102209608935522
15.
Karami
,
S.
,
Hawkes
,
E. R.
,
Talei
,
M.
, and
Chen
,
J. H.
,
2016
, “
Edge Flame Structure in a Turbulent Lifted Flame: A Direct Numerical Simulation Study
,”
Combust. Flame
,
169
, pp.
110
128
.10.1016/j.combustflame.2016.03.006
16.
Su
,
L.
,
Sun
,
O.
, and
Mungal
,
M.
,
2006
, “
Experimental Investigation of Stabilization Mechanisms in Turbulent, Lifted Jet Diffusion Flames
,”
Combust. Flame
,
144
(
3
), pp.
494
512
.10.1016/j.combustflame.2005.08.010
17.
Lyons
,
K. M.
,
2007
, “
Toward an Understanding of the Stabilization Mechanisms of Lifted Turbulent Jet Flames: Experiments
,”
Prog. Energy Combust. Sci.
,
33
(
2
), pp.
211
231
.10.1016/j.pecs.2006.11.001
18.
Brown
,
C. D.
,
Watson
,
K. A.
, and
Lyons
,
K. M.
,
1999
, “
Studies on Lifted Jet Flames in Coflow: The Stabilization Mechanism in the Near-and Far-Fields
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
249
273
.10.1023/A:1009925500084
19.
Guiberti
,
T.
,
Boyette
,
W.
,
Roberts
,
W.
, and
Masri
,
A.
,
2018
, “
Pressure Effects and Transition in the Stabilization Mechanism of Turbulent Lifted Flames
,”
Proc Combust. Inst.
,
37
(
2
), pp.
2167
2174
.10.1016/j.proci.2018.08.033
20.
Yuasa
,
S.
,
1986
, “
Effects of Swirl on the Stability of Jet Diffusion Flames
,”
Combust. Flame
,
66
(
2
), pp.
181
192
.10.1016/0010-2180(86)90090-8
21.
Kim
,
H. K.
,
Kim
,
Y.
,
Lee
,
S. M.
, and
Ahn
,
K. Y.
,
2006
, “
Emission Characteristics of the 0.03 mw Oxy-Fuel Combustor
,”
Energy Fuels
,
20
(
5
), pp.
2125
2130
.10.1021/ef050232p
22.
Kim
,
H. K.
,
Kim
,
Y.
,
Lee
,
S. M.
, and
Ahn
,
K. Y.
,
2007
, “
Studies on Combustion Characteristics and Flame Length of Turbulent Oxy-Fuel Flames
,”
Energy Fuels
,
21
(
3
), pp.
1459
1467
.10.1021/ef060346g
23.
Chigier
,
N. A.
, and
Beér
,
J. M.
,
1964
, “
Velocity and Static-Pressure Distributions in Swirling Air Jets Issuing From Annular and Divergent Nozzles
,”
J. Basic Eng.
,
86
((
4
), pp.
788
796
.10.1115/1.3655954
24.
Chen
,
R.-H.
, and
Driscoll
,
J. F.
,
1989
, “
The Role of the Recirculation Vortex in Improving Fuel-Air Mixing Within Swirling Flames
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
531
540
.10.1016/S0082-0784(89)80060-8
25.
Feikema
,
D.
,
Chen
,
R.-H.
, and
Driscoll
,
J. F.
,
1990
, “
Enhancement of Flame Blowout Limits by the Use of Swirl
,”
Combust. Flame
,
80
(
2
), pp.
183
195
.10.1016/0010-2180(90)90126-C
26.
Degeneve
,
A.
,
Vicquelin
,
R.
,
Mirat
,
C.
,
Labegorre
,
B.
,
Jourdaine
,
P.
,
Caudal
,
J.
, and
Schuller
,
T.
,
2019
, “
Scaling Relations for the Length of Coaxial Oxy-Flames With and Without Swirl
,”
Proc. Combust. Inst.
,
37
(
4
), pp.
4563
4570
.10.1016/j.proci.2018.06.032
27.
Syred
,
N.
,
Chigier
,
N.
, and
Beer
,
J.
,
1971
, “
Flame Stabilization in Recirculation Zones of Jets With Swirl
,”
Symp. (Int.) Combust.
,
13
(
1
), pp.
617
624
.10.1016/S0082-0784(71)80063-2
28.
Chen
,
R.-H.
,
Driscoll
,
J. F.
,
Kelly
,
J.
,
Namazian
,
M.
, and
Schefer
,
R.
,
1990
, “
A Comparison of Bluff-Body and Swirl-Stabilized Flames
,”
Combust. Sci. Technol.
,
71
(
4–6
), pp.
197
217
.10.1080/00102209008951632
29.
Truelove
,
J.
,
Wall
,
T.
,
Dixon
,
T.
, and
Stewart
,
I. M.
,
1982
, “
Flow, Mixing and Combustion Within the Quarl of a Swirled, Pulverised-Coal Burner
,”
Symp. (Int.) Combust.
,
19
(
1
), pp.
1181
1187
.10.1016/S0082-0784(82)80294-4
30.
Dixon
,
T.
,
Truelove
,
J.
, and
Wall
,
T.
,
1983
, “
Aerodynamic Studies on Swirled Coaxial Jets From Nozzles With Divergent Quarls
,”
ASME J. Fluids Eng.
,
105
(
2
), pp.
197
203
.10.1115/1.3240964
31.
Mahmud
,
T.
,
Truelove
,
J.
, and
Wall
,
T.
,
1987
, “
Flow Characteristics of Swirling Coaxial Jets From Divergent Nozzles
,”
ASME J. Fluids Eng.
,
109
(
3
), pp.
275
282
.10.1115/1.3242661
32.
Jourdaine
,
P.
,
Mirat
,
C.
,
Caudal
,
J.
, and
Schuller
,
T.
,
2018
, “
Stabilization Mechanisms of Swirling Premixed Flames With an Axial-Plus-Tangential Swirler
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081502
.10.1115/1.4038617
33.
Degeneve
,
A.
,
Jourdaine
,
P.
,
Mirat
,
C.
,
Caudal
,
J.
,
Vicquelin
,
R.
, and
Schuller
,
T.
,
2019
, “
Effects of a Diverging Cup on Swirl Number, Flow Pattern and Topology of Premixed Flames
,”
ASME
Paper No. GT2018-76152.10.1115/GT2018-76152
34.
Otsu
,
N.
,
1979
, “
A Threshold Selection Method From Gray-Level Histograms
,”
IEEE Trans. Syst., Man, Cybern.
,
9
(
1
), pp.
62
66
.10.1109/TSMC.1979.4310076
35.
Wang
,
Q.
,
Hu
,
L.
,
Zhang
,
X.
,
Zhang
,
X.
,
Lu
,
S.
, and
Ding
,
H.
,
2015
, “
Turbulent Jet Diffusion Flame Length Evolution With Cross Flows in a Sub-Pressure Atmosphere
,”
Energy Convers. Manage.
,
106
, pp.
703
708
.10.1016/j.enconman.2015.09.052
36.
Villermaux
,
E.
, and
Rehab
,
H.
,
2000
, “
Mixing in Coaxial Jets
,”
J. Fluid Mech.
,
425
, pp.
161
185
.10.1017/S002211200000210X
37.
Schumaker
,
S. A.
, and
Driscoll
,
J. F.
,
2009
, “
Coaxial Turbulent Jet Flames: Scaling Relations for Measured Stoichiometric Mixing Lengths
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1655
1662
.10.1016/j.proci.2008.06.051
38.
Fanaca
,
D.
,
Alemela
,
P.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2010
, “
Comparison of the Flow Field of a Swirl Stabilized Premixed Burner in an Annular and a Single Burner Combustion Chamber
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
71502
.10.1115/1.4000120
39.
Mongia
,
H.
,
2011
, “
Engineering Aspects of Complex Gas Turbine Combustion Mixers Part I :
High Delta-T,”
AIAA
Paper No. 2011–107.10.2514/6.2011-107
40.
Juniper
,
M. P.
,
2001
, “
Structure and Stabilization of Cryogenic Spray Flames
,” Ph.D. thesis, Ecole Centrale de Paris, Paris, France.
41.
Tay-Wo-Chong
,
L.
,
Komarek
,
T.
,
Zellhuber
,
M.
,
Lenz
,
J.
,
Hirsch
,
C.
, and
Polifke
,
W.
,
2009
, “
Influence of Strain and Heat Loss on Flame Stabilization in a Non-Adiabatic Combustor
,”
European Combustion Meeting
, Chania, Greece.
42.
Guiberti
,
T.
,
Durox
,
D.
,
Scouflaire
,
P.
, and
Schuller
,
T.
,
2015
, “
Impact of Heat Loss and Hydrogen Enrichment on the Shape of Confined Swirling Flames
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1385
1392
.10.1016/j.proci.2014.06.016
You do not currently have access to this content.