Abstract

We propose an on-the-fly statistical learning method to take a qualitative reduced-order model of the dynamics of a premixed flame and make it quantitatively accurate. This physics-informed data-driven method is based on the statistically optimal combination of (i) a reduced-order model of the dynamics of a premixed flame with a level-set method, (ii) high-quality data, which can be provided by experiments and/or high-fidelity simulations, and (iii) assimilation of the data into the reduced-order model to improve the prediction of the dynamics of the premixed flame. The reduced-order model learns the state and the parameters of the premixed flame on the fly with the ensemble Kalman filter, which is a Bayesian filter used, for example, in weather forecasting. The proposed method and algorithm are applied to two test cases with relevance to reacting flows and instabilities. First, the capabilities of the framework are demonstrated in a twin experiment, where the assimilated data are produced from the same model as that used in prediction. Second, the assimilated data are extracted from a high-fidelity reacting-flow direct numerical simulation (DNS), which provides the reference solution. The results are analyzed by using Bayesian statistics, which robustly provide the level of confidence in the calculations from the reduced-order model. The versatile method we propose enables the optimal calibration of computationally inexpensive reduced-order models in real-time when experimental data become available, for example, from gas-turbine sensors.

References

1.
Strutt
,
J. W.
,
2011
,
The Theory of Sound
, Vol.
2
,
Cambridge University Press
, Cambridge, UK.
2.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
,
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
American Institute of Aeronautics and Astronautics
, Reston, VA.
3.
Culick
,
F. E. C.
,
2006
, “
Unsteady Motions in Combustion Chambers for Propulsion Systems
,” North Atlantic Treaty Organization, Neuilly sur Seine, France, Report No. RTO AGARDograph AG-AVT-039.
4.
Kabiraj
,
L.
,
Saurabh
,
A.
,
Wahi
,
P.
, and
Sujith
,
R. I.
,
2012
, “
Route to Chaos for Combustion Instability in Ducted Laminar Premixed Flames
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
22
(
2
), p.
023129
.10.1063/1.4718725
5.
Kashinath
,
K.
,
Waugh
,
I. C.
, and
Juniper
,
M. P.
,
2014
, “
Nonlinear Self-Excited Thermoacoustic Oscillations of a Ducted Premixed Flame: Bifurcations and Routes to Chaos
,”
J. Fluid Mech.
,
761
, pp.
399
430
.10.1017/jfm.2014.601
6.
Gotoda
,
H.
,
Nikimoto
,
H.
,
Miyano
,
T.
, and
Tachibana
,
S.
,
2011
, “
Dynamic Properties of Combustion Instability in a Lean Premixed Gas-Turbine Combustor
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
21
(
1
), p.
013124
.10.1063/1.3563577
7.
Waugh
,
I.
,
Geuß
,
M.
, and
Juniper
,
M.
,
2011
, “
Triggering, Bypass Transition and the Effect of Noise on a Linearly Stable Thermoacoustic System
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
2945
2952
.10.1016/j.proci.2010.06.018
8.
Kiureghian
,
A. D.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.10.1016/j.strusafe.2008.06.020
9.
Magri
,
L.
,
Bauerheim
,
M.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part I: Sensitivity
,”
J. Comput. Phys.
,
325
, pp.
395
410
.10.1016/j.jcp.2016.07.032
10.
Magri
,
L.
,
Bauerheim
,
M.
,
Nicoud
,
F.
, and
Juniper
,
M. P.
,
2016
, “
Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors—Part II: Uncertainty Quantification
,”
J. Comput. Phys.
,
325
, pp.
411
421
.10.1016/j.jcp.2016.08.043
11.
Juniper
,
M. P.
, and
Sujith
,
R.
,
2018
, “
Sensitivity and Nonlinearity of Thermoacoustic Oscillations
,”
Annu. Rev. Fluid Mech.
,
50
(
1
), pp.
661
689
.10.1146/annurev-fluid-122316-045125
12.
Poinsot
,
T.
,
2017
, “
Prediction and Control of Combustion Instabilities in Real Engines
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1
28
.10.1016/j.proci.2016.05.007
13.
Bennett
,
A. F.
,
1992
,
Inverse Methods in Physical Oceanography
,
Cambridge University Press
,
Cambridge, UK
.
14.
Bennett
,
A. F.
,
2002
,
Inverse Modeling of the Ocean and Atmosphere
,
Cambridge University Press
,
Cambridge, UK
.
15.
Evensen
,
G.
,
2009
,
Data Assimilation
,
Springer
,
Berlin
.
16.
Colburn
,
C. H.
,
Cessna
,
J. B.
, and
Bewley
,
T. R.
,
2011
, “
State Estimation in Wall-Bounded Flow Systems—Part 3: The Ensemble Kalman Filter
,”
J. Fluid Mech.
,
682
, pp.
289
303
.10.1017/jfm.2011.222
17.
Gronskis
,
A.
,
Heitz
,
D.
, and
Mémin
,
E.
,
2013
, “
Inflow and Initial Conditions for Direct Numerical Simulation Based on Adjoint Data Assimilation
,”
J. Comput. Phys.
,
242
, pp.
480
497
.10.1016/j.jcp.2013.01.051
18.
Foures
,
D.
,
Dovetta
,
N.
,
Sipp
,
D.
, and
Schmid
,
P.
,
2014
, “
A Data-Assimilation Method for Reynolds-Averaged Navier-Stokes-Driven Mean Flow Reconstruction
,”
J. Fluid Mech.
,
759
, pp.
404
431
.10.1017/jfm.2014.566
19.
Kato
,
H.
,
Yoshizawa
,
A.
,
Ueno
,
G.
, and
Obayashi
,
S.
,
2015
, “
A Data Assimilation Methodology for Reconstructing Turbulent Flows Around Aircraft
,”
J. Comput. Phys.
,
283
, pp.
559
581
.10.1016/j.jcp.2014.12.013
20.
Mons
,
V.
,
Chassaing
,
J.-C.
,
Gomez
,
T.
, and
Sagaut
,
P.
,
2016
, “
Reconstruction of Unsteady Viscous Flows Using Data Assimilation Schemes
,”
J. Comput. Phys.
,
316
, pp.
255
280
.10.1016/j.jcp.2016.04.022
21.
Mons
,
V.
,
Chassaing
,
J.-C.
, and
Sagaut
,
P.
,
2017
, “
Optimal Sensor Placement for Variational Data Assimilation of Unsteady Flows Past a Rotationally Oscillating Cylinder
,”
J. Fluid Mech.
,
823
, pp.
230
277
.10.1017/jfm.2017.313
22.
Darakananda
,
D.
,
Eldredge
,
J.
,
da Silva
,
A.
,
Colonius
,
T.
, and
Williams
,
D. R.
,
2018
, “
EnKF-Based Dynamic Estimation of Separated Flows With a Low-Order Vortex Model
,” AIAA Paper No. 2018–0811.
23.
Labahn
,
J. W.
,
Wu
,
H.
,
Coriton
,
B.
,
Frank
,
J. H.
, and
Ihme
,
M.
,
2018
, “
Data Assimilation Using High-Speed Measurements and LES to Examine Local Extinction Events in Turbulent Flames
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2259
2266
.10.1016/j.proci.2018.06.043
24.
Jazwinski
,
A. H.
,
2007
,
Stochastic Processes and Filtering Theory
,
Dover Publications
, Mineola, NY.
25.
Waugh
,
I. C.
,
Kashinath
,
K.
, and
Juniper
,
M. P.
,
2014
, “
Matrix-Free Continuation of Limit Cycles and Their Bifurcations for a Ducted Premixed Flame
,”
J. Fluid Mech.
,
759
, pp.
1
27
.10.1017/jfm.2014.549
26.
Dowling
,
A. P.
,
1999
, “
A Kinematic Model of a Ducted Flame
,”
J. Fluid Mech.
,
394
, pp.
51
72
.10.1017/S0022112099005686
27.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
, Cambridge, UK.
28.
Yu
,
H.
,
Jaravel
,
T.
,
Ihme
,
M.
,
Juniper
,
M. P.
, and
Magri
,
L.
,
2018
, “
Physics-Informed Data-Driven Prediction of Premixed Flame Dynamics With Data Assimilation
,” Center for Turbulence Research, pp. 329--338.
29.
Kashinath
,
K.
,
Hemchandra
,
S.
, and
Juniper
,
M. P.
,
2013
, “
Nonlinear Thermoacoustics of Ducted Premixed Flames: The Influence of Perturbation Convection Speed
,”
Combust. Flame
,
160
(
12
), pp.
2856
2865
.10.1016/j.combustflame.2013.06.019
30.
Landau
,
L.
, and
Lifshitz
,
E.
,
1969
,
Mechanics
(A Course of Theoretical Physics, Vol.
1
), 2nd ed.,
Pergamon Press
, Oxford, UK.
31.
Osher
,
S.
, and
Sethian
,
J. A.
,
1988
, “
Fronts Propagating With Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations
,”
J. Comput. Phys.
,
79
(
1
), pp.
12
49
.10.1016/0021-9991(88)90002-2
32.
Adalsteinsson
,
D.
, and
Sethian
,
J. A.
,
1995
, “
A Fast Level Set Method for Propagating Interfaces
,”
J. Comput. Phys.
,
118
(
2
), pp.
269
277
.10.1006/jcph.1995.1098
33.
Peng
,
D.
,
Merriman
,
B.
,
Osher
,
S.
,
Zhao
,
H.
, and
Kang
,
M.
,
1999
, “
A PDE-Based Fast Local Level Set Method
,”
J. Comput. Phys.
,
155
(
2
), pp.
410
438
.10.1006/jcph.1999.6345
34.
Liu
,
X.-D.
,
Osher
,
S.
, and
Chan
,
T.
,
1994
, “
Weighted Essentially Non-Oscillatory Schemes
,”
J. Comput. Phys.
,
115
(
1
), pp.
200
212
.10.1006/jcph.1994.1187
35.
Jiang
,
G.-S.
, and
Shu
,
C.-W.
,
1996
, “
Efficient Implementation of Weighted ENO Schemes
,”
J. Comput. Phys.
,
126
(
1
), pp.
202
228
.10.1006/jcph.1996.0130
36.
Shu
,
C.-W.
, and
Osher
,
S.
,
1988
, “
Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes
,”
J. Comput. Phys.
,
77
(
2
), pp.
439
471
.10.1016/0021-9991(88)90177-5
37.
Waugh
,
I.
,
2013
, “
Methods for Analysis of Nonlinear Thermoacoustic Systems
,” Ph.D. thesis, University of Cambridge, Cambridge, UK.
38.
Preetham
,
H. S.
, and
Lieuwen
,
T.
,
2008
, “
Dynamics of Laminar Premixed Flames Forced by Harmonic Velocity Disturbances
,”
J. Propul. Power
,
24
(
6
), pp.
1390
1402
.10.2514/1.35432
39.
Orchini
,
A.
,
Rigas
,
G.
, and
Juniper
,
M. P.
,
2016
, “
Weakly Nonlinear Analysis of Thermoacoustic Bifurcations in the Rijke Tube
,”
J. Fluid Mech.
,
805
, pp.
523
550
.10.1017/jfm.2016.585
40.
Semlitsch
,
B.
,
Orchini
,
A.
,
Dowling
,
A. P.
, and
Juniper
,
M. P.
,
2017
, “
G-Equation Modelling of Thermoacoustic Oscillations of Partially Premixed Flames
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
260
276
.10.1177/1756827717711405
41.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.10.1006/jcph.1994.1155
42.
Sethian
,
J. A.
,
1996
, “
A Fast Marching Level Set Method for Monotonically Advancing Fronts
,”
Proc. Natl. Acad. Sci. U. S. A.
,
93
(
4
), pp.
1591
1595
.10.1073/pnas.93.4.1591
43.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
44.
Kalman
,
R. E.
, and
Bucy
,
R. S.
,
1961
, “
New Results in Linear Filtering and Prediction Theory
,”
ASME J. Basic Eng.
,
83
(
1
), pp.
95
108
.10.1115/1.3658902
45.
Sarkka
,
S.
,
2013
,
Bayesian Filtering and Smoothing
,
Cambridge University Press
,
Cambridge, UK
.
46.
Tarantola
,
A.
,
2005
,
Inverse Problem Theory and Methods for Model Parameter Estimation
,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
47.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2006
, “
Adaptive Computation and Machine Learning
,”
Gaussian Processes for Machine Learning
,
MIT Press
, Cambridge, MA.
48.
Ma
,
P. C.
,
Lv
,
Y.
, and
Ihme
,
M.
,
2017
, “
An Entropy-Stable Hybrid Scheme for Simulations of Transcritical Real-Fluid Flows
,”
J. Comput. Phys.
,
340
, pp.
330
357
.10.1016/j.jcp.2017.03.022
49.
Khalighi
,
Y.
,
Ham
,
F.
,
Nichols
,
J.
,
Lele
,
S.
, and
Moin
,
P.
,
2011
, “
Unstructured Large Eddy Simulation for Prediction of Noise Issued From Turbulent Jets in Various Configurations
,”
AIAA
Paper No. 2011–2886.10.2514/6.2011-2886
50.
Rigas
,
G.
,
Jamieson
,
N. P.
,
Li
,
L. K. B.
, and
Juniper
,
M. P.
,
2016
, “
Experimental Sensitivity Analysis and Control of Thermoacoustic Systems
,”
J. Fluid Mech.
,
787
, pp. R1-1–R1-11.10.1017/jfm.2015.715
51.
Narayanaswamy
,
K.
,
Blanquart
,
G.
, and
Pitsch
,
H.
,
2010
, “
A Consistent Chemical Mechanism for Oxidation of Substituted Aromatic Species
,”
Combust. Flame
,
157
(
10
), pp.
1879
1898
.10.1016/j.combustflame.2010.07.009
52.
Tranquilli
,
P.
, and
Sandu
,
A.
,
2014
, “
Rosenbrock–Krylov Methods for Large Systems of Differential Equations
,”
SIAM J. Sci. Comput.
,
36
(
3
), pp.
A1313
A1338
.10.1137/130923336
53.
Wu
,
H.
,
Ma
,
P. C.
, and
Ihme
,
M.
,
2017
, “
Efficient Time Stepping for Reactive Turbulent Simulations With Stiff Chemistry
,”
AIAA
Paper No. 2018-1672.10.2514/6.2018-1672
54.
Hamill
,
T. M.
,
2001
, “
Interpretation of Rank Histograms for Verifying Ensemble Forecasts
,”
Mon. Weather Rev.
,
129
(
3
), pp.
550
560
.10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
55.
Cuquel
,
A.
,
Durox
,
D.
, and
Schuller
,
T.
,
2013
, “
Impact of Flame Base Dynamics on the Non-Linear Frequency Response of Conical Flames
,”
C. R. Mec.
,
341
(
1–2
), pp.
171
180
.10.1016/j.crme.2012.11.004
56.
Nastac
,
G.
,
Labahn
,
J. W.
,
Magri
,
L.
, and
Ihme
,
M.
,
2017
, “
Lyapunov Exponent as a Metric for Assessing the Dynamic Content and Predictability of Large-Eddy Simulations
,”
Phys. Rev. Fluids
,
2
(
9
), p.
094606
.10.1103/PhysRevFluids.2.094606
You do not currently have access to this content.