Abstract

Low engine order (LEO) excitation in a turbomachine stage can be induced by nonuniform inflow conditions, manufacturing tolerances, or in-service wear. LEOs are known to excite significant forced response vibration amplitudes that can easily cause high cycle fatigue failure of blades. The accurate prediction of LEO excitation usually requires high-fidelity computational fluid dynamics (CFD) models of the full annulus of the machine due to the loss of symmetry leading to excessive computational cost. Previous investigation showed that the aerodynamic excitation stemming from the blade-passing-frequency in a vaned radial inflow turbine can be accurately predicted by using the nonlinear harmonic (NLH) method at highly reduced computational costs. In the current paper, the feasibility of the NLH method for the prediction of LEO excitation due to geometrical asymmetries is investigated for the same test object. An exact digital replica of the nozzle guide ring is created using measured throat width data. NLH simulations resolving different combinations of frequencies and a time-marching calculation are conducted with the new model involving this digital replica. The results show that a NLH model including small number of certain frequencies is able to predict the occurring LEO excitation sufficiently accurate. By comparing results from subsequent forced response analysis with measured vibration amplitudes, a satisfactory agreement was found confirming this conclusion.

References

References
1.
Bréard
,
C.
,
Green
,
J.
, and
Imregun
,
M.
,
2003
, “
Low-Engine-Order Excitation Mechanisms in Axial-Flow Turbomachinery
,”
J. Propul. Power
,
19
(
4
), pp.
704
712
. 10.2514/2.6160
2.
Sayma
,
A.
,
Vahdati
,
M.
, and
Imregun
,
M.
,
2000
, “
An Integrated Nonlinear Approach for Turbomachinery Forced Response Prediction—Part 1: Formulation
,”
J. Fluids Struct.
,
4
, pp.
87
101
.10.1006/jfls.1999.0253
3.
Vahdati
,
M.
,
Sayma
,
A.
, and
Imregun
,
M.
,
2000
, “
An Integrated Nonlinear Approach for Turbomachinery Forced Repsonse Prediction—Part 2: Case Studies
,”
J. Fluids Struct.
,
4
, pp.
103
125
.10.1006/jfls.1999.0254
4.
He
,
L.
,
Menshikova
,
V.
, and
Haller
,
B. R.
,
2004
, “
Influence of Hot Streak Circumferential Length-Scale in Transonic Turbine Stage
,”
ASME
Paper No. GT2004-53370.10.1115/GT2004-53370
5.
Mayorca
,
M. A.
, and
Ozturk
,
R. B. U.
,
2013
, “
Estimation of Burner Can-Induced Excitation Levels in an Industrial Gas Turbine
,”
ASME
Paper No. GT2013-95849.10.1115/GT2013-95849
6.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
, “
Axial Flow Compressor Noise Studies
,”
SAE
Technical Paper No. 620532.
7.
Müller
,
T. R.
,
Vogt
,
D. M.
,
Vogel
,
K.
,
Phillipsen
,
B. A.
, and
Hönisch
,
P.
,
2017
, “
Influence of Detailing on Predicted Aerodynamic Forcing of a Transonic Axial Turbine Stage
,”
ASME
Paper No. GT2017-64502.10.1115/GT2017-64502
8.
Elliott
,
B.
,
Sayma
,
A.
, and
Imregun
,
M.
,
2005
, “
Aeromechanical Design of Damped High Pressure Turbine Blades Subject to Low Engine Order Forcing
,”
Evaluation, Control and Prevention of High Cycle Fatigue in Gas Turbine Engines for Land, Sea and Air Vehicles,
Meeting Proceedings RTO-MP-AVT-121, Neuilly-sur-Seine, France, pp.
1
16
.https://apps.dtic.mil/dtic/tr/fulltext/u2/a469579.pdf
9.
Aschenbruck
,
J.
,
Meinzer
,
C. E.
,
Pohle
,
L.
,
Panning-von Scheidt
,
L.
, and
Seume
,
J. R.
,
2013
, “
Regeneration-Induced Forced Response in Axial Turbines
,”
ASME
Paper No. GT2013-95431.10.1115/GT2013-95431
10.
Jöcker
,
M.
,
Kessar
,
A.
,
Fransson
,
T.
,
Kahl
,
G.
, and
Rehder
,
H.-J.
,
2003
, “
Comparison of Models to Predict Low Engine Order Excitation in a High Pressure Turbine Stage
,”
Tenth ISUAAAT Conference
, Durham, NC, Sept. 8–11, pp.
145
159
. https://www.researchgate.net/publication/224796773_Comparison_of_Models_to_Predict_Low_Engine_Order_Excitation_in_a_High_Pressure_Turbine_Stage
11.
Kessar
,
A.
,
Jöcker
,
M.
,
Fransson
,
T.
,
Rehder
,
H.-J.
, and
Kost
,
F.
,
2005
, “
Flow Measurements for Low Engine Order Excitations in a High Pressure Turbine Stage
,”
Sixth ETC Conference
, Lille, France, Mar. 7–11.
12.
Figaschewsky
,
F.
,
Giersch
,
T.
, and
Kühhorn
,
A.
,
2014
, “
Forced Response Prediction of an Axial Turbine Rotor With Regard to Aerodynamically Mistuned Excitation
,”
ASME
Paper No. GT2014-25896.10.1115/GT2014-25896
13.
Figaschewsky
,
F.
,
Giersch
,
T.
, and
Kühhorn
,
A.
,
2015
, “
Probabilistic Analysis of Low Engine Order Excitation Due to Geometric Perturbations of Upstream Nozzle Guide Vanes
,”
22nd International Symposium on Air Breathing Engines
, Phoenix, AZ, Oct. 25–30.
14.
Hall
,
K. C.
,
Thomas
,
J. P.
, and
Clark
,
W. S.
,
2002
, “
Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique
,”
AIAA J.
,
40
(
5
), pp.
879
886
.10.2514/2.1754
15.
He
,
L.
, and
Ning
,
W.
,
1998
, “
Efficient Approach for Analysis of Unsteady Viscous Flows in Turbomachines
,”
AIAA J.
,
36
(
11
), pp.
2005
2012
.10.2514/2.328
16.
Kovachev
,
N.
,
Waldherr
,
C. U.
,
Mayer
,
J. F.
, and
Vogt
,
D. M.
,
2018
, “
Prediction of Aerodynamically Induced Blade Vibrations in a Radial Turbine Rotor Using the Nonlinear Harmonic Approach
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
021007
.10.1115/1.4040856
17.
Vilmin
,
S.
,
Lorrain
,
E.
,
Hirsch
,
C.
, and
Swoboda
,
M.
,
2006
, “
Unsteady Flow Modeling Across the Rotor/Stator Interface Using the Nonlinear Harmonic Method
,”
ASME
Paper No. GT2006-90210.10.1115/GT2006-90210
18.
Vilmin
,
S.
,
Lorrain
,
E.
,
Tartinville
,
B.
,
Capron
,
A.
, and
Hirsch
,
C.
,
2013
, “
The Nonlinear Harmonic Method: From Single Stage to Multi-Row Effects
,”
Int. J. Comput. Fluid Dyn.
,
27
(
2
), pp.
88
99
.10.1080/10618562.2012.752074
19.
He
,
L.
,
2010
, “
Fourier Methods for Turbomachinery Applications
,”
Prog. Aerosp. Sci.
,
46
(
8
), pp.
329
341
.10.1016/j.paerosci.2010.04.001
20.
Gerolymos
,
G. A.
,
Michon
,
G. J.
, and
Neubauer
,
J.
,
2002
, “
Analysis and Application of Chorochronic Periodicity in Turbomachinery Rotor/Stator Interaction Computations
,”
J. Propul. Power
,
18
(
6
), pp.
1139
1152
.10.2514/2.6065
21.
Müller
,
T.
,
Waldherr
,
C.
,
Kovachev
,
N.
,
Rakut
,
C.
,
Esper
,
A.
,
Lenzen
,
C.
, and
Wunderlich
,
M.
,
2018
, “
Blade Forces
,” Final Report FVV Project No. 1189.
22.
Esper
,
A.
,
Lenzen
,
C.
, and
Wirsum
,
M.
,
2017
, “
Commissioning of a Test Stand for Turbocharger Investigations at Constant Turbine Inlet Temperatures
,”
17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
(
ISROMAC-17
), Maui, HI, Dec. 16–21.http://isromac-isimet.univ-lille1.fr/upload_dir/finalpaper17/50.finalpaper.pdf
23.
Waldherr
,
C. U.
, and
Vogt
,
D. M.
,
2017
, “
A Comparison of Two Reduced Order Methods for Probabilistic Mistuning Investigations
,”
ASME
Paper No. GTINDIA2017-4684.10.1115/GTINDIA2017-4684
24.
Waldherr
,
C. U.
, and
Vogt
,
D. M.
,
2018
, “
An Extension of the Classical Subset of Nominal Modes Method for the Model Order Reduction of Gyroscopic Systems
,”
ASME J. Eng. Gas Turbines Power
,
141
(
5
), p.
052501
.10.1115/1.4041117
You do not currently have access to this content.