Abstract

The conventional operation of a hydrogen internal combustion engine (ICE) under lean conditions results in low NOx emissions, however, at the cost of power generated. In this study, the power output of a hydrogen-fueled ICE was increased while maintaining the NOx emissions at low levels. The power output was increased by turbocharging, relatively richer operation, and spark timing optimization, whereas a combination of exhaust gas recirculation (EGR) and H2-selective catalytic reduction (H2-SCR) aftertreatment was used to reduce NOx emissions. Turbocharging resulted in a maximum torque output of 168 N·m at 3200 rpm as compared to 70 N·m at 1600 rpm for the naturally aspirated operation. However, the turbocharger could not generate enough boost at low speeds and the equivalence ratio was increased to obtain a high power output which resulted in a substantial increase in the NOx emissions. The use of EGR resulted in an average reduction of 72% in the NOx emissions. Retarding of spark timing significantly reduced the NOx emissions too, but was limited by the adverse impact on the torque. Since hydrogen would be available onboard a hydrogen-fueled vehicle, we for the first time report external injection of H2 for use as a reductant in the selective catalytic reduction unit. Even under extremely oxidizing conditions, the efficiency of aftertreatment was found to be 35.4% averaged over various speeds. A maximum of 83.7% overall reduction in NOx emissions was achieved by using the combined EGR and H2-SCR strategies.

References

1.
Dincer
,
I.
, and
Acar
,
C.
,
2017
, “
Innovation in Hydrogen Production
,”
Int. J. Hydrogen Energy
,
42
(
22
), pp.
14843
14864
.10.1016/j.ijhydene.2017.04.107
2.
Das
,
L. M.
,
2002
, “
Near-Term Introduction of Hydrogen Engines for Automotive and Agricultural Application
,”
Int. J. Hydrogen Energy
,
27
(
5
), pp.
479
487
.10.1016/S0360-3199(01)00163-X
3.
Verhelst
,
S.
,
2014
, “
Recent Progress in the Use of Hydrogen as a Fuel for Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
39
(
2
), pp.
1071
1085
.10.1016/j.ijhydene.2013.10.102
4.
Saravanan
,
N.
,
Nagarajan
,
G.
,
Sanjay
,
G.
,
Dhanasekaran
,
C.
, and
Kalaiselvan
,
K. M.
,
2008
, “
Combustion Analysis on a DI Diesel Engine With Hydrogen in Dual Fuel Mode
,”
Fuel
,
87
(
17–18
), pp.
3591
3599
.10.1016/j.fuel.2008.07.011
5.
Açıkgöz
,
B.
,
Çelik
,
C.
,
Soyhan
,
H. S.
,
Gökalp
,
B.
, and
Karabağ
,
B.
,
2015
, “
Emission Characteristics of an Hydrogen–CH4 Fuelled Spark Ignition Engine
,”
Fuel
,
159
, pp.
298
307
.10.1016/j.fuel.2015.06.043
6.
Ji
,
C.
,
Wang
,
S.
,
Zhang
,
B.
, and
Liu
,
X.
,
2013
, “
Emissions Performance of a Hybrid Hydrogen–Gasoline Engine-Powered Passenger Car Under the New European Driving Cycle
,”
Fuel
,
106
, pp.
873
875
.10.1016/j.fuel.2013.01.011
7.
Das
,
L. M.
,
1990
, “
Hydrogen Engines: A View of the Past and a Look Into the Future
,”
Int. J. Hydrogen Energy
,
15
(
6
), pp.
425
443
.10.1016/0360-3199(90)90200-I
8.
Liu
,
X.
,
Liu
,
F.
,
Zhou
,
L.
,
Sun
,
B.
, and
Schock
,
H.
,
2008
, “
Backfire Prediction in a Manifold Injection Hydrogen Internal Combustion Engine
,”
Int. J. Hydrogen Energy
,
33
(
14
), pp.
3847
3855
.10.1016/j.ijhydene.2008.04.051
9.
Duan
,
J.
,
Liu
,
F.
, and
Sun
,
B.
,
2014
, “
Backfire Control and Power Enhancement of a Hydrogen Internal Combustion Engine
,”
Int. J. Hydrogen Energy
,
39
(
9
), pp.
4581
4589
.10.1016/j.ijhydene.2013.12.175
10.
Krishnanunni
,
J.
,
Govindappa
,
P.
, and
Das
,
L. M.
,
2017
, “
Development of Hydrogen Fuelled Transport Engine and Field Tests on Vehicles
,”
Int. J. Hydrogen Energy
,
42
(
1
), pp.
643
651
.10.1016/j.ijhydene.2016.09.107
11.
Lee
,
J.
,
Lee
,
K.
,
Lee
,
J.
, and
Anh
,
B.
,
2014
, “
High Power Performance With Zero NOx Emission in a Hydrogen-Fueled Spark Ignition Engine by Valve Timing and Lean Boosting
,”
Fuel
,
128
, pp.
381
389
.10.1016/j.fuel.2014.03.010
12.
Nieminen
,
J.
,
D'Souza
,
N.
, and
Dincer
,
I.
,
2010
, “
Comparative Combustion Characteristics of Gasoline and Hydrogen Fuelled ICEs
,”
Int. J. Hydrogen Energy
,
35
(
10
), pp.
5114
5123
.10.1016/j.ijhydene.2009.08.098
13.
Verhelst
,
S.
,
Maesschalck
,
P.
,
Rombaut
,
N.
, and
Sierens
,
R.
,
2009
, “
Increasing the Power output of hydrogen Internal Combustion Engines by Means of Supercharging and Exhaust Gas Recirculation
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4406
4412
.10.1016/j.ijhydene.2009.03.037
14.
Berckmüller
,
M.
,
Rottengruber
,
H.
,
Eder
,
A.
,
Brehm
,
N.
,
Elasser
,
G.
,
Alander
,
G. M.
, and
Schwarz
,
C.
,
2003
, “
Potentials of a Charged SI-Hydrogen Engine
,”
SAE
Paper No. 2003-01-3210. 10.4271/2003-01-3210
15.
Natkin
,
R. J.
,
Tang
,
X.
,
Boyer
,
B.
,
Oltmans
,
B.
,
Denlinger
,
A.
, and
Heffel
,
J. W.
,
2003
, “
Hydrogen IC Engine Boosting Performance and NOx Study
,”
SAE
Paper No. 2003-01-0631. 10.4271/2003-01-0631
16.
Furuhama
,
S.
, and
Fukuma
,
T.
,
1986
, “
High Output Power Hydrogen Engine With High Pressure Fuel Injection, Hot Surface Ignition and Turbocharging
,”
Int. J. Hydrogen Energy
,
11
(
6
), pp.
399
407
.10.1016/0360-3199(86)90029-7
17.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New Delhi, India
, Chap.
11
.
18.
Das
,
L. M.
, and
Mathur
,
R.
,
1993
, “
Exhaust Gas Recirculation for NOx Control in a Multi-Cylinder Hydrogen-Supplemented S.I. Engine
,”
Int. J. Hydrogen Energy
,
18
(
12
), pp.
1013
1018
.10.1016/0360-3199(93)90084-N
19.
Heffel
,
J. W.
,
2003
, “
NOx Emission and Performance Data for a Hydrogen Fueled Internal Combustion Engine at 1500 Rpm Using Exhaust Gas Recirculation
,”
Int. J. Hydrogen Energy
,
28
(
8
), pp.
901
908
.10.1016/S0360-3199(02)00157-X
20.
Szwaja
,
S.
, and
Naber
,
J. D.
,
2007
, “
Exhaust Gas Recirculation Strategy in the Hydrogen SI Engine
,”
J. KONES Powertrain Transp.
,
14
(
2
), pp.
457
464
.https://kones.eu/ep/2007/vol14/no2/JO%20KONES%202007%20NO.%202%20VOL%2014%20SZWAJA%20NABER.pdf
21.
Verhelst
,
S.
,
Vancoillie
,
J.
,
Naganuma
,
K.
,
De Paepe
,
M.
,
Dierickx
,
J.
,
Huyghebaert
,
Y.
, and
Wallner
,
T.
,
2013
, “
Setting a Best Practice for Determining the EGR Rate in Hydrogen Internal Combustion Engines
,”
Int. J. Hydrogen Energy
,
38
(
5
), pp.
2490
2503
.10.1016/j.ijhydene.2012.11.138
22.
Krishnanunni
,
J.
,
Bhatia
,
D.
,
Dutta
,
V.
,
Das
,
L. M.
,
Jilakara
,
S.
, and
Subash
,
G. P.
,
2017
, “
Development of Hydrogen Fuelled Low NOx Engine With Exhaust Gas Recirculation and Exhaust After Treatment
,”
SAE
Paper No. 2017-26-0074. 10.4271/2017-26-0074
23.
Quader
,
A. A.
,
1971
, “
Why Intake Charge Dilution Decreases Nitric Oxide Emission From Spark Ignition Engines
,”
SAE
Paper No. 710009. 10.4271/710009
24.
Andersen
,
H. C.
,
Green
,
W. J.
, and
Steele
,
D. R.
,
1961
, “
The Catalytic Treatment of Nitric Acid Plant Tail Gas
,”
Ind. Eng. Chem.
,
53
(
3
), pp.
199
204
.10.1021/ie50615a023
25.
Costa
,
C. N.
, and
Efstathiou
,
A. M.
,
2007
, “
Low-Temperature H2-SCR of NO on a Novel Pt/MgO-CeO2 Catalyst
,”
Appl. Catal. B: Environ.
,
72
(
3–4
), pp.
240
252
.10.1016/j.apcatb.2006.11.010
26.
Polychronopoulou
,
K.
, and
Efstathiou
,
A. M.
,
2012
, “
NOx Control Via H2-Selective Catalytic Reduction (H2-SCR) Technology for Stationary and Mobile Applications
,”
Recent Patents Mater. Sci.
,
5
(
2
), pp.
87
104
.10.2174/1874465611205020087
27.
Liu
,
Z.
,
Li
,
J.
, and
Woo
,
S.
,
2012
, “
Recent Advances in the Selective Catalytic Reduction of NOx by Hydrogen in the Presence of Oxygen
,”
Energy Environ. Sci.
,
5
(
10
), pp.
8799
8814
.10.1039/c2ee22190j
28.
Ceper
,
B. A.
,
2012
, “
Experimental Investigation of the Effect of Spark Plug Gap on a Hydrogen Fueled SI Engine
,”
Int. J. Hydrogen Energy
,
37
(
22
), pp.
17310
17320
.10.1016/j.ijhydene.2012.08.070
29.
Jayakrishnan
,
K.
,
2018
, “
Development of a Hydrogen Fuelled Multi-Cylinder Vehicular Engine With H2-SCR Aftertreatment System
,” Ph.D. thesis, Indian Institute of Technology Delhi, New Delhi, India.
30.
Unni
,
J. K.
,
Bhatia
,
D.
, and
Das
,
L. M.
,
2017
, “
Experimental and Modeling Investigations on the Performance and Emission Characteristics of a Single Cylinder Hydrogen Engine
,”
Int. J. Hydrogen Energy
,
42
(
49
), pp.
29574
29584
.10.1016/j.ijhydene.2017.10.018
31.
Kherdekar
,
P.
, and
Bhatia
,
D.
,
2017
, “
Simulation of a Spark Ignited Hydrogen Engine for Minimization of NOx Emissions
,”
Int. J. Hydrogen Energy
,
42
(
7
), pp.
4579
4596
.10.1016/j.ijhydene.2016.10.074
32.
Clayton
,
R. D.
,
Harold
,
M. P.
, and
Balakotaiah
,
V.
,
2008
, “
Selective Catalytic Reduction of NO by H2 in O2 on Pt/BaO/Al2O3 Monolith NOx Storage Catalysts
,”
Appl. Catal. B: Environ.
,
81
(
3–4
), pp.
161
181
.10.1016/j.apcatb.2007.11.038
33.
Li
,
J.
,
Wu
,
G.
,
Guan
,
N.
, and
Li
,
L.
,
2012
, “
NO Selective Reduction by Hydrogen Over Bimetallic Pd-Ir/TiO2 Catalyst
,”
Catal. Commun.
,
24
, pp.
38
43
.10.1016/j.catcom.2012.03.014
34.
Frank
,
B.
,
Emig
,
G.
, and
Renken
,
A.
,
1998
, “
Kinetics and Mechanism of the Reduction of Nitric Oxides by H2 Under Lean-Burn Conditions on a Pt-Mo-Co/α-Al2O3 Catalyst
,”
Appl. Catal. B: Environ.
,
19
(
1
), pp.
45
57
.10.1016/S0926-3373(98)00057-5
35.
Costa
,
C. N.
,
Savva
,
P. G.
,
Fierro
,
J. L. G.
, and
Efstathiou
,
A. M.
,
2007
, “
Industrial H2-SCR on a Novel Pt/MgO-CeO2 Catalyst
,”
Appl. Catal. B: Environ.
,
75
(
3–4
), pp.
147
156
.10.1016/j.apcatb.2007.04.018
36.
Matsumoto
,
S.
,
2000
, “
Catalytic Reduction of Nitrogen Oxides in Automotive Exhaust Containing Excess Oxygen by NOx Storage-Reduction Catalyst
,”
CATTECH
,
4
(
2
), pp.
102
109
.10.1023/A:1011951415060
37.
Wiśniewski
,
M.
, and
Zawadzki
,
J.
,
2003
, “
In Situ FTIR Study of the Reduction of NO by H2 in the Presence of O2 Over Carbon-Film-Supported Pt Catalyst
,”
Catal. Lett.
,
85
(
3–4
), pp.
3
4
.10.1023/B:CATL.0000020538.16361.85
38.
Schott
,
F. J. P.
,
Balle
,
P.
,
Adler
,
J.
, and
Kureti
,
S.
,
2009
, “
Reduction of NOx by H2 on Pt/WO3/ZrO2 Catalysts in Oxygen-Rich Exhaust
,”
Appl. Catal. B: Environ.
,
87
(
1–2
), pp.
18
29
.10.1016/j.apcatb.2008.08.021
39.
Park
,
S. M.
,
Jang
,
H.
,
Kim
,
E. S.
,
Han
,
H. S.
, and
Seo
,
G.
,
2012
, “
Incorporation of Zirconia Onto Silica for Improved Pt/SiO2 Catalysts for the Selective Reduction of NO by H2
,”
Appl. Catal. A: General
,
427–428
, pp.
155
164
.10.1016/j.apcata.2012.03.045
40.
Resitoglu
,
I. A.
, and
Keskin
,
A.
,
2017
, “
Hydrogen Applications in Selective Catalytic Reduction of NOx Emissions From Diesel Engines
,”
Int. J. Hydrogen Energy
,
42
(
36
), pp.
23389
23394
.10.1016/j.ijhydene.2017.02.011
You do not currently have access to this content.