Abstract

Propagation characteristics of a detonation wave in an air-breathing rotating detonation combustor (RDC) using natural gas (NG)–hydrogen fuel blends is presented in this paper. Short-duration (∼up to 6 s) experiments were performed on a 152.4 mm OD uncooled RDC with two different annulus gap widths (5.08 mm and 7.62 mm) over a range of equivalence ratios (0.6–1.0) at varying inlet air temperatures (∼65–204 °C) and NG content (up to 15%) with precombustion operating pressure slightly above ambient. It was observed that the RDC, with an annulus gap width of 5.08 mm, was inherently unstable when NG was added to the hydrogen fuel while operating at precombustion pressures near ambient and at an inlet air temperature of 65 °C. Increasing the annulus gap width to 7.62 mm improved the stability of the detonation wave at similar temperatures and pressure permitting operation with as much as 5% NG by volume. While observed speeds of the detonation waves were still below theoretical values, an increase in inlet air temperature reduced the variability in wave speed. The frequency analysis thus explored in this study is an effort to quantify detonation instability in an RDC under varying operational envelope. The data presented are relevant toward developing strategies to sustain a stable detonation wave in an RDC using NG for land-based power generation.

References

References
1.
Patel
,
S.
,
2018
, “
GE HA Turbine Snags Another World Record for CCGT Efficiency
,” Power Magazine, accessed Mar. 28, 2019, https://www.powermag.com/ge-ha-turbine-snags-another-world-record-for-ccgt-efficiency/
2.
Anand
,
V.
,
St. George
,
A.
,
Driscoll
,
R.
, and
Gutmark
,
E.
,
2015
, “
Characterization of Instabilities in a Rotating Detonation Combustor
,”
Int. J. Hydrogen Energy
,
40
(
46
), pp.
16649
16659
.10.1016/j.ijhydene.2015.09.046
3.
Anand
,
V.
,
St. George
,
A.
,
Driscoll
,
R.
, and
Gutmark
,
E.
,
2016
, “
Investigation of Rotating Detonation Combustor Operation With H2-Air Mixtures
,”
Int. J. Hydrogen Energy
,
41
(
2
), pp.
1281
1292
.10.1016/j.ijhydene.2015.11.041
4.
Zhang
,
Y.
,
Xu
,
A.
,
Zhang
,
G.
,
Zhu
,
C.
, and
Lin
,
C.
,
2016
, “
Kinetic Modeling of Detonation and Effects of Negative Temperature Coefficient
,”
Combust. Flame
,
173
, pp.
483
492
.10.1016/j.combustflame.2016.04.003
5.
Ma
,
Z.
,
Zhang
,
S.
,
Luan
,
M.
,
Yao
,
S.
,
Xia
,
Z.
, and
Wang
,
J.
,
2018
, “
Experimental Research on Ignition, Quenching, Reinitiation and the Stabilization Process in Rotating Detonation Engine
,”
Int. J. Hydrogen Energy.
, 43(39), pp.
18521
18529
.10.1016/j.ijhydene.2018.08.064
6.
Anand
,
V.
,
George
,
A.
,
Driscoll
,
R.
, and
Gutmark
,
E.
,
2016
, “
Analysis of Air Inlet and Fuel Plenum Behavior in a Rotating Detonation Combustor
,”
Exp. Therm. Fluid Sci.
,
70
, pp.
408
416
.10.1016/j.expthermflusci.2015.10.007
7.
Li
,
Y.
,
Wang
,
Y.
,
Wang
,
J.
, and
Li
,
Y.
,
2014
, “
Detonation Instability of Continuously Rotating Detonation Engines for H2 -Air Mixture
,”
Int. Invent. J. Eng. Sci. Technol.
,
1
(
1
), pp.
1
7
.http://internationalinventjournals.org/journals/IIJEST/Archive/2014/June_vol_1_issue_1/fulltext/Li%20et%20al.pdf
8.
Anand
,
V.
,
St. George
,
A.
, and
Gutmark
,
E.
,
2017
, “
Amplitude Modulated Instability in Reactants Plenum of a Rotating Detonation Combustor
,”
Int. J. Hydrogen Energy
,
42
(
17
), pp.
12629
12644
.10.1016/j.ijhydene.2017.03.218
9.
George
,
A. S.
,
Driscoll
,
R.
,
Anand
,
V.
, and
Gutmark
,
E.
,
2016
, “
On the Existence and Multiplicity of Rotating Detonations
,”
Proc. Combust. Inst.
,
11
, pp.
1
8
.10.1016/j.proci.2016.06.132
10.
Bluemner
,
R.
,
Bohon
,
M. D.
,
Paschereit
,
C. O.
, and
Gutmark
,
E. J.
,
2018
, “
Single and Counter-Rotating Wave Modes in an RDC
,”
AIAA
Paper No. 2018-1608.10.2514/6.2018-1608
11.
Zahn
,
A.
,
Knight
,
E.
,
Anand
,
V.
,
Jodele
,
J.
, and
Gutmark
,
E. J.
,
2018
, “
Examination of Counter-Rotating Detonation Waves Using Cross-Correlation
,”
AIAA
Paper No. 2018–4568.10.2514/6.2018-4568
12.
Anand
,
V.
,
St. George
,
A.
,
Driscoll
,
R.
, and
Gutmark
,
E.
,
2016
, “
Longitudinal Pulsed Detonation Instability in a Rotating Detonation Combustor
,”
Exp. Therm. Fluid Sci.
,
77
, pp.
212
225
.10.1016/j.expthermflusci.2016.04.025
13.
Bull
,
D. C.
,
Elsworth
,
J. E.
,
Shuff
,
P. J.
, and
Metcalfe
,
E.
,
1982
, “
Detonation Cell Structures in Fuel/Air Mixtures
,”
Combust. Flame
,
45
, pp.
7
22
.10.1016/0010-2180(82)90028-1
14.
Guirao
,
C. M.
,
Knystautas
,
R.
, and
Lee
,
J. H.
,
1989
, “
A Summary Hydrogen-Air Detonation Experiments
,” Sandia National Laboratories, Albuquerque, NM, Report No. NUREG/CR-496 1.
15.
Wilhite
,
J.
,
Driscoll
,
R. B.
,
St. George
,
A. C.
,
Ganesh Kumar
,
V. A.
, and
Gutmark
,
E. J.
,
2016
, “
Investigation of a Rotating Detonation Engine Using Ethylene-Air Mixture
,”
AIAA
Paper No. 2016-1650.10.2514/6.2016-1650
16.
Schwer
,
D. A.
, and
Kailasanath
,
K.
,
2011
, “
Effect of Inlet on Fill Region and Performance of Rotating Detonation Engines
,”
AIAA
Paper No. 2011-6044.10.2514/6.2011-6044
17.
Kaneshige
,
M.
, and
Shepherd
,
J. E.
,
1997
, “
Detonation Database
,”
Galcit
, pp.
130
131
. http://shepherd.caltech.edu/detn_db/html/db.html
18.
Zipf
,
R. K.
,
Gamezo
,
V. N.
,
Sapko
,
M. J.
,
Marchewka
,
W. P.
,
Mohamed
,
K. M.
,
Oran
,
E. S.
,
Kessler
,
D. A.
,
Weiss
,
E. S.
,
Addis
,
J. D.
,
Karnack
,
F. A.
, and
Sellers
,
D. D.
,
2013
, “
Methane-Air Detonation Experiments at NIOSH Lake Lynn Laboratory
,”
J. Loss Prev. Process Ind.
,
26
(
2
), pp.
295
301
.10.1016/j.jlp.2011.05.003
19.
Sorin
,
R.
,
Bozier
,
O.
,
Zitoun
,
R.
, and
Desbordes
,
D.
,
2009
, “
Deflagration to Detonation Transition in Binary Fuel H2/CH4 With Air Mixtures
,” 22nd
International Colloquium on the Dynamics of Explosion and Reactive Systems (ICDERS)
, Minsk, Belarus, July 27–31, pp.
6
9
.
20.
Anand
,
V.
,
St. George
,
A.
,
Farbos de Luzan
,
C.
, and
Gutmark
,
E.
,
2018
, “
Rotating Detonation Wave Mechanics Through Ethylene-Air Mixtures in Hollow Combustors, and Implications to High Frequency Combustion Instabilities
,”
Exp. Therm. Fluid Sci.
,
92
, pp.
314
325
.10.1016/j.expthermflusci.2017.12.004
21.
Wang
,
Y.
,
Le
,
J.
,
Wang
,
C.
, and
Zheng
,
Y.
,
2018
, “
A Non-Premixed Rotating Detonation Engine Using Ethylene and Air
,”
Appl. Therm. Eng.
,
137
, pp.
749
757
.10.1016/j.applthermaleng.2018.04.015
22.
Zhong
,
Y.
,
Jin
,
D.
,
Wu
,
Y.
, and
Chen
,
X.
,
2018
, “
Investigation of Rotating Detonation Wave Fueled by ‘Ethylene-Acetylene-Hydrogen’ Mixture
,”
Int. J. Hydrogen Energy
,
43
(
31
), pp.
14787
14797
.10.1016/j.ijhydene.2018.05.174
23.
Schwer
,
D. A.
, and
Kailasanath
,
K.
,
2017
, “
Assessment of Rotating Detonation Engines With Fuel Blends
,”
AIAA
Paper No. 2017-4942.10.2514/6.2017-4942
24.
Bykovskii
,
F. A.
,
Zhdan
,
S. A.
, and
Vedernikov
,
E. F.
,
2018
, “
Continuous Detonation of Methane/Hydrogen–Air Mixtures in an Annular Cylindrical Combustor
,”
Combust. Explos. Shock Waves
,
54
(
4
), pp.
472
481
.10.1134/S0010508218040111
25.
Welch
,
C.
,
Depperschmidt
,
D.
,
Miller
,
R.
,
Tobias
,
J.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Lowe
,
S.
,
2018
, “
Experimental Analysis of Wave Propagation in a Methane-Fueled Rotating Detonation Combustor
,”
ASME
Paper No. GT2018-77258.10.1115/GT2018-77258
26.
Tobias
,
J.
,
Depperschmidt
,
D.
,
Welch
,
C.
,
Miller
,
R.
,
Uddi
,
M.
,
Agrawal
,
A. K.
, and
Jr
,
R. D.
,
2018
, “
OH* Chemiluminescence Imaging of the Combustion Products From a Methane-Fueled Rotating Detonation Engine
,”
ASME
Paper No. GT2018-77255.10.1115/GT2018-77255
27.
Walters
,
I. V.
,
Journell
,
C.
,
Lemcherfi
,
A.
,
Gejji
,
R.
,
Heister
,
S. D.
, and
Slabaugh
,
C. D.
,
2018
, “
Experimental Investigation of a Piloted, Natural Gas-Air Rotating Detonation Wave Combustor
,”
AIAA
Paper No. 2018–4782.10.2514/6.2018-4782
28.
Naples
,
A.
,
Hoke
,
J. L.
, and
Schauer
,
F. R.
,
2018
, “
Quantification of Infinite Line Pressure Probe Response to Shocks and Detonation Waves
,”
AIAA
Paper No. 2018-1886.10.2514/6.2018-1886
29.
Roy
,
A.
,
Ferguson
,
D.
,
Sidwell
,
T.
,
O'Meara
,
B.
,
Strakey
,
P.
,
Bedick
,
C.
, and
Sisler
,
A.
,
2017
, “
Experimental Study of Rotating Detonation Combustor Performance Under Preheat and Back Pressure Operation
,”
AIAA
Paper No. 2017-1065.10.2514/6.2017-1065
30.
Shepherd
,
J. E.
,
2018
, “
Shock & Detonation Toolbox—Cantera 2.1
,” Explosion Dynamics Laboratory, California Institute of Technology, accessed Oct. 11, 2019, http://shepherd.caltech.edu/EDL/publicresources.html
You do not currently have access to this content.