Abstract

Based on existing reports and databases, most of the installations in highly turbulent sites in fact fail to reach the expected energy yield, resulting in still or underperforming turbines that also give bad press for the technology. A better understanding of the real performance of wind turbines under highly turbulent conditions is then pivotal to ensure the economic viability of new installations. To this end, the possible use of computational fluid dynamics (CFD) techniques could provide notable benefits, reducing the time-to-market and the cost with respect to experiments. On the other hand, it is intrinsically not easy to reproduce properly intense and large-scale turbulence with the techniques of common use for research and industry (e.g., CFD unsteady Reynolds-averaged Navier–Stokes (URANS)), while the only methods that are granted to do so (e.g., direct numerical simulation (DNS) or large eddy simulation (LES)) are often not computationally affordable. Moving from this background, this study presents the development of a numerical strategy to exploit at their maximum level the capabilities of an unsteady RANS approach in order to reproduce fields of macroturbulence of use for wind energy applications. The study is made of two main parts. In the first part, the numerical methodology is discussed and assessed based on real wind tunnel data. The benefits and drawbacks are presented also in comparison to other existing methods. In the second part, it has been used to simulate the behavior under turbulence of a H Darrieus vertical-axis wind turbine, for which unique wind tunnel data were available. The simulations, even if preliminary, showed good matching with experiments (e.g., confirming the increase of power), showing then the potential of the method.

References

1.
European Union
,
2011
, “Energy Roadmap 2050,” accessed July 22, 2019, https://ec.europa.eu/energy/en/topics/energy-strategy-and-energy-union/2050-energy-strategy
2.
van Kuik
,
G. A. M.
,
Peinke
,
J.
,
Nijssen
,
R.
,
Lekou
,
D.
,
Mann
,
J.
,
Sørensen
,
J. N.
,
Ferreira
,
C.
,
van Wingerden
,
J. W.
,
Schlipf
,
D.
,
Gebraad
,
P.
,
Polinder
,
H.
,
Abrahamsen
,
A.
,
van Bussel
,
G. J. W.
,
Sørensen
,
J. D.
,
Tavner
,
P.
,
Bottasso
,
C. L.
,
Muskulus
,
M.
,
Matha
,
D.
,
Lindeboom
,
H. J.
,
Degraer
,
S.
,
Kramer
,
O.
,
Lehnhoff
,
S.
,
Sonnenschein
,
M.
,
Sørensen
,
P. E.
,
Künneke
,
R. W.
,
Morthorst
,
P. E.
, and
Skytte
,
K.
,
2016
, “
Long-Term Research Challenges in Wind Energy—A Research Agenda by the European Academy of Wind Energy
,”
Wind Energy Sci.
,
1
(
1
), pp.
1
39
.10.5194/wes-1-1-2016
3.
International Energy Agency (IEA)
,
2017
, IEA Wind TCP Annual Report—Task 27: Small Wind Turbines in High Turbulence Sites, Paris, France.
4.
Lubitz
,
W. D.
,
2011
, “
Impact of Ambient Turbulence on Performance of a Small Wind Turbine
,”
Renewable Energy
,
61
(C), pp.
69
73
.10.1016/j.renene.2012.08.015
5.
Barlow
,
J. F.
, and
Drew
,
D. R.
,
2015
, “
Wind Flow in the Urban Environment
,”
WINERCOST Work-Shop Trends and Challenges for Wind Energy Harvesting
, Coimbra, Portugal, Mar. 30–31, 2015.
6.
Cooper
,
P.
,
2010
,
Development and Analysis of Vertical-Axis Wind Turbines Wind Power Generation and Wind Turbine Design
,
T.
Wei
, ed.,
WIT Press
,
Ashurst
.
7.
IEC
,
2005
,
Design Requirements
, 3rd ed., Geneve, Switzerland, Standard No.
61400
1
.
8.
IEA
, 2018, “
Task 27: Small Wind Turbines in High-Turbulence Sites
,” Paris, France, accessed Dec. 27, 2018, https://community.ieawind.org/task27/home
9.
Marten
,
D.
,
Wendler
,
J.
,
Pechlivanoglou
,
G.
,
Nayeri
,
C. N.
, and
Paschereit
,
C. O.
,
2013
, “
QBlade: An Open Source Tool for Design and Simulation of Horizontal and Vertical Axis Wind Turbines
,”
IJETAE
,
3
(3), pp.
264
269
.https://www.academia.edu/20606166/QBlade_an_Open_Source_Tool_for_Design_and_Simulation_of_Horizontal_and_Vertical_Axis_Wind_Turbines
10.
NREL, “
NREL TurbSim
,” Lakewood (CO), USA, accessed Dec. 27, 2018, https://nwtc.nrel.gov/TurbSim
11.
Spalart
,
P. R.
,
2000
, “
Strategies for Turbulence Modelling and Simulations
,”
Int. J. Heat Fluid Flow
,
21
(
3
), pp.
252
263
.10.1016/S0142-727X(00)00007-2
12.
Tritton
,
D. J.
,
1998
,
Physical Fluid Dynamics
, 2nd ed.,
Springer
,
London
.
13.
Menter
,
F. R.
,
1994
, “
Two-Equation Turbulence-Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
14.
Marconcini
,
M.
, Università degli Studi di Firenze, personal communication.
15.
Ansys, Inc.,
2013
,
Fluent Theory Guide, Release 14.5
,
Ansys
,
Canonsburg, PA
.
16.
Carbò Molina
,
A.
,
Massai
,
T.
,
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
,
De Troyer
,
T.
, and
Bartoli
,
G.
,
2018
, “
Combined Experimental and Numerical Study on the Near Wake of a Darrieus VAWT Under Turbulent Flows
,”
J. Phys.: Conf. Ser.
,
1037
, pp.
1
8
.10.1088/1742-6596/1037/7/072052
17.
Carbó Molina
,
A.
,
Bartoli
,
G.
, and
De Troyer
,
T.
,
2017
, “
Generation of Uniform Turbulence Profiles in the Wind Tunnel for Urban VAWT Testing
,”
Wind Energy Exploitation in Urban Environment
,
Springer
,
UK
.
18.
CRIACIV Consortium, accessed Oct. 19, 2018, http://www.criaciv.com/about-criaciv/
19.
Damota
,
J.
,
Lamas
,
I.
,
Couce
,
A.
, and
Rodríguez
,
J.
,
2015
, “
Vertical Axis Wind Turbines: Current Technologies and Future Trends
,”
International Conference on Renewable Energies and Power Quality (ICREPQ'15)
, La Coruña, Spain, Mar. 25–27, pp.
1
6
.
20.
Liu
,
L.
,
Zhang
,
L.
,
Wu
,
B.
, and
Chen
,
B.
,
2017
, “
Numerical and Experimental Studies on Grid-Generated Turbulence in Wind Tunnel
,”
J. Eng. Sci. Technol. Rev.
,
10
(
3
), pp.
159
169
.10.25103/jestr.103.21
21.
Laneville
,
L.
,
1973
, “
Effects of Turbulence on Wind Induced Vibration of Bluff Cylinders
,” Ph.D. thesis, The University of British Columbia, Vancouver, Canada.
22.
El-Gabry
,
L. A.
,
Thurman
,
D. L.
, and
Poinsatte
,
P. E.
, 2014, “
Procedure for Determining Turbulence Length Scales Using Hotwire Anemometry
,” NASA, USA, Report No.
NASA/TM
—2014-218403.https://www.worldcat.org/title/procedure-for-determining-turbulence-length-scales-using-hotwire-anemometry/oclc/910564334
23.
Roach
,
P. E.
,
1987
, “
The Generation of Nearly Isotropic Turbulence by Means of Grid
,”
Int. J. Heat Fluid Flow
,
8
(
2
), pp.
82
92
.10.1016/0142-727X(87)90001-4
24.
Kimura
,
I.
,
Uijttewaal
,
W. S. J.
,
Hosoda
,
T.
, and
Ali
,
M. S.
,
2009
, “
URANS Computations of Shallow Grid Turbulence
,”
J. Hydraul. Eng.
,
135
(
2
), pp.
118
131
.10.1061/(ASCE)0733-9429(2009)135:2(118)
25.
ANSYS Inc,
2009
,
Ansys Fluent 12.0—UDF Manual
, Ansys, Canonsburg, PA.
26.
Kooiman
,
S. J.
, and
Tullis
,
S. W.
,
2010
, “
Response of a Vertical Axis Wind Turbine to Time Varying Wind Conditions Found Within the Urban Environment
,”
Wind Eng.
,
34
(
4
), pp.
389
401
.10.1260/0309-524X.34.4.389
27.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Bachant
,
P.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2017
, “
Effectiveness of Two-Dimensional CFD Simulations for Darrieus VAWTs: A Combined Numerical and Experimental Assessment
,”
Energy Convers. Manage.
,
136
, pp.
318
328
.10.1016/j.enconman.2017.01.026
28.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Maleci
,
R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Critical Issues in the CFD Simulation of Darrieus Wind Turbines
,”
Renewable Energy
,
85
(1)
, pp.
419
435
.10.1016/j.renene.2015.06.048
29.
Rainbird
,
J.
,
Bianchini
,
A.
,
Balduzzi
,
F.
,
Peiro
,
J.
,
Graham
,
J. M. R.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2015
, “
On the Influence of Virtual Camber Effect on Airfoil Polars for Use in Simulations of Darrieus Wind Turbines
,”
Energy Convers. Manage.
,
106
, pp.
373
384
.10.1016/j.enconman.2015.09.053
30.
Balduzzi
,
F.
,
Bianchini
,
A.
,
Ferrara
,
G.
, and
Ferrari
,
L.
,
2016
, “
Dimensionless Numbers for the Assessment of Mesh and Timestep Requirements in CFD Simulations of Darrieus Wind Turbines
,”
Energy
,
97
, pp.
246
261
.10.1016/j.energy.2015.12.111
31.
Bianchini
,
A.
,
Balduzzi
,
F.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Persico
,
B.
,
Dossena
,
V.
, and
Battisti
,
L.
,
2017
, “
Detailed Analysis of the Wake Structure of a Straight-Blade H-Darrieus Wind Turbine by Means of Wind Tunnel Experiments and CFD Simulations
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
032604
.10.1115/1.4037906
32.
Lanzafame
,
R.
,
Mauro
,
S.
, and
Messina
,
M.
,
2014
, “
2D CFD Modeling of H-Darrieus Wind Turbines Using a Transition Turbulence Model
,”
Energy Procedia
,
45
, pp.
131
140
.10.1016/j.egypro.2014.01.015
You do not currently have access to this content.