Abstract

The conventional design of organic Rankine cycle (ORC) power systems starts with the selection of the working fluid and the subsequent optimization of the corresponding thermodynamic cycle. More recently, systematic methods have been proposed integrating the selection of the working fluid into the optimization of the thermodynamic cycle. However, in both cases, the turbine is designed subsequently. This procedure can lead to a suboptimal design, especially in the case of mini- and small-scale ORC systems, since the preselected combination of working fluid and operating conditions may lead to infeasible turbine designs. The resulting iterative design procedure may end in conservative solutions after multiple trial-and-error attempts due to the strong interdependence of the many design variables and constraints involved. In this work, we therefore present a new design and optimization method integrating working fluid selection, thermodynamic cycle design, and preliminary turbine design. To this purpose, our recent 1-stage continuous-molecular targeting (CoMT)-computer-aided molecular design (CAMD) method for the integrated design of the ORC process and working fluid is expanded by a turbine meanline design procedure. Thereby, the search space of the optimization is bounded to regions where the design of the turbine is feasible. The resulting method has been tested for the design of a small-scale high-temperature ORC unit adopting a radial-inflow turbo-expander. The results confirm the potential of the proposed method over the conventional iterative design practice for the design of small-scale ORC turbogenerators.

References

1.
Colonna
,
P.
,
Casati
,
E.
,
Trapp
,
C.
,
Mathijssen
,
T.
,
Larjola
,
J.
,
Turunen-Saaresti
,
T.
, and
Uusitalo
,
A.
,
2015
, “
Organic Rankine Cycle Power Systems: Rom the Concept to Current Technology, Applications, and an Outlook to the Future
,”
ASME J. Eng. Gas Turbines Power
,
137
(
10
), p.
100801
.10.1115/1.4029884
2.
Tchanche
,
B. F.
,
Papadakis
,
G.
,
Lambrinos
,
G.
, and
Frangoudakis
,
A.
,
2009
, “
Fluid Selection for a Low-Temperature Solar Organic Rankine Cycle
,”
Appl. Therm. Eng.
,
29
(
11–12
), pp.
2468
2476
.10.1016/j.applthermaleng.2008.12.025
3.
Heberle
,
F.
, and
Brüggemann
,
D.
,
2010
, “
Exergy Based Fluid Selection for a Geothermal Organic Rankine Cycle for Combined Heat and Power Generation
,”
Appl. Therm. Eng.
,
30
(
11–12
), pp.
1326
1332
.10.1016/j.applthermaleng.2010.02.012
4.
Quoilin
,
S.
,
Declaye
,
S.
,
Tchanche
,
B. F.
, and
Lemort
,
V.
,
2011
, “
Thermo-Economic Optimization of Waste Heat Recovery Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2885
2893
.10.1016/j.applthermaleng.2011.05.014
5.
Lang
,
W.
,
Colonna
,
P.
, and
Almbauer
,
R.
,
2013
, “
Assessment of Waste Heat Recovery From a Heavy-Duty Truck Engine by Means of an ORC Turbogenerator
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042313
.10.1115/1.4023123
6.
Quoilin
,
S.
,
van Broek
,
M. D.
,
Declaye
,
S.
,
Dewallef
,
P.
, and
Lemort
,
V.
,
2013
, “
Techno-Economic Survey of Organic Rankine Cycle (ORC) Systems
,”
Renewable Sustainable Energy Rev.
,
22
, pp.
168
186
.10.1016/j.rser.2013.01.028
7.
Bao
,
J.
, and
Zhao
,
L.
,
2013
, “
A Review of Working Fluid and Expander Selections for Organic Rankine Cycle
,”
Renewable Sustainable Energy Rev.
,
24
, pp.
325
342
.10.1016/j.rser.2013.03.040
8.
Linke
,
P.
,
Papadopoulos
,
A.
, and
Seferlis
,
P.
,
2015
, “
Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review
,”
Energies
,
8
(
6
), pp.
4755
4801
.10.3390/en8064755
9.
Lai
,
N. A.
,
Wendland
,
M.
, and
Fischer
,
J.
,
2011
, “
Working Fluids for High-Temperature Organic Rankine Cycles
,”
Energy
,
36
(
1
), pp.
199
211
.10.1016/j.energy.2010.10.051
10.
Drescher
,
U.
, and
Brüggemann
,
D.
,
2007
, “
Fluid Selection for the Organic Rankine Cycle (ORC) in Biomass Power and Heat Plants
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
223
228
.10.1016/j.applthermaleng.2006.04.024
11.
Maizza
,
V.
, and
Maizza
,
A.
,
2001
, “
Unconventional Working Fluids in Organic Rankine-Cycles for Waste Energy Recovery Systems
,”
Appl. Therm. Eng.
,
21
(
3
), pp.
381
390
.10.1016/S1359-4311(00)00044-2
12.
Wang
,
Z. Q.
,
Zhou
,
N. J.
,
Guo
,
J.
, and
Wang
,
X. Y.
,
2012
, “
Fluid Selection and Parametric Optimization of Organic Rankine Cycle Using Low Temperature Waste Heat
,”
Energy
,
40
(
1
), pp.
107
115
.10.1016/j.energy.2012.02.022
13.
Schwöbel
,
J. A. H.
,
Preißinger
,
M.
,
Brüggemann
,
D.
, and
Klamt
,
A.
,
2017
, “
High-Throughput Screening of Working Fluids for the Organic Rankine Cycle (ORC) Based on Conductor-Like Screening Model for Realistic Solvation (COSMO-RS) and Thermodynamic Process Simulations
,”
Ind. Eng. Chem. Res.
,
56
(
3
), pp.
788
798
.10.1021/acs.iecr.6b03857
14.
Preißinger
,
M.
,
Schwöbel
,
J. A.
,
Klamt
,
A.
, and
Brüggemann
,
D.
,
2017
, “
Multi-Criteria Evaluation of Several Million Working Fluids for Waste Heat Recovery by Means of Organic Rankine Cycle in Passenger Cars and Heavy-Duty Trucks
,”
Appl. Energy
,
206
, pp.
887
899
.10.1016/j.apenergy.2017.08.212
15.
Papadopoulos
,
A. I.
,
Tsivintzelis
,
I.
,
Linke
,
P.
, and
Seferlis
,
P.
,
2018
, “
Computer-Aided Molecular Design: Fundamentals, Methods, and Applications
,”
In: Reedijk, J. (Ed.) Elsevier Reference Module in Chemistry, Molecular Sciences and Chemical Engineering
, Elsevier, Waltham, MA.
16.
Papadopoulos
,
A. I.
,
Stijepovic
,
M.
, and
Linke
,
P.
,
2010
, “
On the Systematic Design and Selection of Optimal Working Fluids for Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
30
(
6–7
), pp.
760
769
.10.1016/j.applthermaleng.2009.12.006
17.
Bardow
,
A.
,
Steur
,
K.
, and
Gross
,
J.
,
2010
, “
Continuous-Molecular Targeting for Integrated Solvent and Process Design
,”
Ind. Eng. Chem. Res.
,
49
(
6
), pp.
2834
2840
.10.1021/ie901281w
18.
Lampe
,
M.
,
Stavrou
,
M.
,
Bücker
,
H. M.
,
Gross
,
J.
, and
Bardow
,
A.
,
2014
, “
Simultaneous Optimization of Working Fluid and Process for Organic Rankine Cycles Using PC-SAFT
,”
Ind. Eng. Chem. Res.
,
53
(
21
), pp.
8821
8830
.10.1021/ie5006542
19.
Gross
,
J.
, and
Sadowski
,
G.
,
2001
, “
Perturbed-Chain SAFT: An Equation of State Based on a Perturbation Theory for Chain Molecules
,”
Ind. Eng. Chem. Res.
,
40
(
4
), pp.
1244
1260
.10.1021/ie0003887
20.
Sauer
,
E.
,
Stavrou
,
M.
, and
Gross
,
J.
,
2014
, “
Comparison Between a Homo- and a Heterosegmented Group Contribution Approach Based on the Perturbed-Chain Polar Statistical Associating Fluid Theory Equation of State
,”
Ind. Eng. Chem. Res.
,
53
(
38
), pp.
14854
14864
.10.1021/ie502203w
21.
Lampe
,
M.
,
Stavrou
,
M.
,
Schilling
,
J.
,
Sauer
,
E.
,
Gross
,
J.
, and
Bardow
,
A.
,
2015
, “
Computer-Aided Molecular Design in the Continuous-Molecular Targeting Framework Using Group-Contribution PC-SAFT
,”
Comput. Chem. Eng.
,
81
, pp.
278
287
.10.1016/j.compchemeng.2015.04.008
22.
Schilling
,
J.
,
Lampe
,
M.
,
Gross
,
J.
, and
Bardow
,
A.
,
2017
, “
1-Stage CoMT-CAMD: An Approach for Integrated Design of ORC Process and Working Fluid Using PC-SAFT
,”
Chem. Eng. Sci.
,
159
, pp.
217
230
.10.1016/j.ces.2016.04.048
23.
Schilling
,
J.
,
Tillmanns
,
D.
,
Lampe
,
M.
,
Hopp
,
M.
,
Gross
,
J.
, and
Bardow
,
A.
,
2017
, “
From Molecules to Dollars: Integrating Molecular Design Into Thermo-Economic Process Design Using Consistent Thermodynamic Modeling
,”
Mol. Syst. Des. Eng.
,
2
(
3
), pp.
301
320
.10.1039/C7ME00026J
24.
Lötgering-Lin
,
O.
, and
Gross
,
J.
,
2015
, “
Group Contribution Method for Viscosities Based on Entropy Scaling Using the Perturbed-Chain Polar Statistical Associating Fluid Theory
,”
Ind. Eng. Chem. Res.
,
54
(
32
), pp.
7942
7952
.10.1021/acs.iecr.5b01698
25.
Hopp
,
M.
, and
Gross
,
J.
,
2017
, “
Thermal Conductivity of Real Substances From Excess Entropy Scaling Using PCP-SAFT
,”
Ind. Eng. Chem. Res.
,
56
(
15
), pp.
4527
4538
.10.1021/acs.iecr.6b04289
26.
Schilling
,
J.
,
Eichler
,
K.
,
Kölsch
,
B.
,
Pischinger
,
S.
, and
Bardow
,
A.
,
2019
, “
Integrated Design of Working Fluid and Organic Rankine Cycle Utilizing Transient Exhaust Gases of Heavy-Duty Vehicles
,”
Appl. Energy
,
255
, p.
113207
.10.1016/j.apenergy.2019.05.010
27.
White
,
M. T.
,
Oyewunmi
,
O. A.
,
Haslam
,
A. J.
, and
Markides
,
C. N.
,
2017
, “
Industrial Waste-Heat Recovery Through Integrated Computer-Aided Working-Fluid and ORC System Optimisation Using SAFT-γ Mie
,”
Energy Convers. Manage.
,
150
, pp.
851
869
.10.1016/j.enconman.2017.03.048
28.
Papaioannou
,
V.
,
Lafitte
,
T.
,
Avendaño
,
C.
,
Adjiman
,
C. S.
,
Jackson
,
G.
,
Müller
,
E. A.
, and
Galindo
,
A.
,
2014
, “
Group Contribution Methodology Based on the Statistical Associating Fluid Theory for Heteronuclear Molecules Formed From Mie Segments
,”
J. Chem. Phys.
,
140
(
5
), p.
054107
.10.1063/1.4851455
29.
White
,
M.
,
Oyewunmi
,
O.
,
Chatzopoulou
,
M.
,
Pantaleo
,
A.
,
Haslam
,
A.
, and
Markides
,
C.
,
2018
, “
Computer-Aided Working-Fluid Design, Thermodynamic Optimisation and Thermoeconomic Assessment of ORC Systems for Waste-Heat Recovery
,”
Energy
,
161
, pp.
1181
1198
.10.1016/j.energy.2018.07.098
30.
van Kleef
,
L. M.
,
Oyewunmi
,
O. A.
, and
Markides
,
C. N.
,
2019
, “
Multi-Objective Thermo-Economic Optimization of Organic Rankine Cycle (ORC) Power Systems in Waste-Heat Recovery Applications Using Computer-Aided Molecular Design Techniques
,”
Appl. Energy
,
251
, p.
112513
.10.1016/j.apenergy.2019.01.071
31.
Aljundi
,
I. H.
,
2011
, “
Effect of Dry Hydrocarbons and Critical Point Temperature on the Efficiencies of Organic Rankine Cycle
,”
Renewable Energy
,
36
(
4
), pp.
1196
1202
.10.1016/j.renene.2010.09.022
32.
Angelino
,
G.
, and
Di Paliano
,
P. C.
,
1998
, “
Multicomponent Working Fluids for Organic Rankine Cycles (ORCs)
,”
Energy
,
23
(
6
), pp.
449
463
.10.1016/S0360-5442(98)00009-7
33.
Chen
,
H.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. K.
,
2011
, “
A Supercritical Rankine Cycle Using Zeotropic Mixture Working Fluids for the Conversion of Low-Grade Heat Into Power
,”
Energy
,
36
(
1
), pp.
549
555
.10.1016/j.energy.2010.10.006
34.
Papadopoulos
,
A. I.
,
Stijepovic
,
M.
,
Linke
,
P.
,
Seferlis
,
P.
, and
Voutetakis
,
S.
,
2013
, “
Toward Optimum Working Fluid Mixtures for Organic Rankine Cycles Using Molecular Design and Sensitivity Analysis
,”
Ind. Eng. Chem. Res.
,
52
(
34
), pp.
12116
12133
.10.1021/ie400968j
35.
Rayegan
,
R.
, and
Tao
,
Y.
,
2011
, “
A Procedure to Select Working Fluids for Solar Organic Rankine Cycles (ORCs)
,”
Renewable Energy
,
36
(
2
), pp.
659
670
.10.1016/j.renene.2010.07.010
36.
Sauret
,
E.
, and
Rowlands
,
A. S.
,
2011
, “
Candidate Radial-Inflow Turbines and High-Density Working Fluids for Geothermal Power Systems
,”
Energy
,
36
(
7
), pp.
4460
4467
.10.1016/j.energy.2011.03.076
37.
Bahamonde
,
S.
,
Pini
,
M.
,
De Servi
,
C.
,
Rubino
,
A.
, and
Colonna
,
P.
,
2017
, “
Method for the Preliminary Fluid Dynamic Design of High-Temperature Mini-Organic Rankine Cycle Turbines
,”
ASME J. Eng. Gas Turbines Power
,
139
(
8
), p.
082606
.10.1115/1.4035841
38.
Struebing
,
H.
,
2011
, “
Identifying Optimal Solvents for Reactions Using Quantum Mechanics and Computer-Aided Molecular Design
,” Ph.D. thesis, Imperial College London, London.
39.
Grossmann
,
I. E.
,
Viswanathan
,
J.
,
Vecchietti
,
A.
,
Raman
,
R.
, and
Kalvelagen
,
E.
,
2002
, “
GAMS/DICOPT: A Discrete Continuous Optimization Package
,”
GAMS Development Corporation
,
Fairfax, VA
.
40.
Floudas
,
C. A.
,
1995
,
Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications
(Topics in Chemical Engineering),
Oxford University Press
,
New York
.
41.
Adamczyk
,
J. J.
,
2000
, “
Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design
,”
ASME J. Turbomach.
,
122
(
2
), pp.
189
217
.10.1115/1.555439
42.
Gross
,
J.
,
2005
, “
An Equation-of-State Contribution for Polar Components: Quadrupolar Molecules
,”
AIChE J.
,
51
(
9
), pp.
2556
2568
.10.1002/aic.10502
43.
Gross
,
J.
, and
Vrabec
,
J.
,
2006
, “
An Equation-of-State Contribution for Polar Components: Dipolar Molecules
,”
AIChE J.
,
52
(
3
), pp.
1194
1204
.10.1002/aic.10683
44.
Stavrou
,
M.
,
Lampe
,
M.
,
Bardow
,
A.
, and
Gross
,
J.
,
2014
, “
Continuous Molecular Targeting–Computer-Aided Molecular Design (CoMT–CAMD) for Simultaneous Process and Solvent Design for CO2 Capture
,”
Ind. Eng. Chem. Res.
,
53
(
46
), pp.
18029
18041
.10.1021/ie502924h
45.
Joback
,
K. G.
, and
Reid
,
R. C.
,
1987
, “
Estimation of Pure-Component Properties From Group-Contributions
,”
Chem. Eng. Commun.
,
57
(
1–6
), pp.
233
243
.10.1080/00986448708960487
46.
Ten
,
J. Y.
,
Hassim
,
M. H.
,
Chemmangattuvalappil
,
N.
, and
Ng
,
D. K.
,
2016
, “
A Novel Chemical Product Design Framework With the Integration of Safety and Health Aspects
,”
J. Loss Prev. Process Ind.
,
40
, pp.
67
80
.10.1016/j.jlp.2015.11.027
47.
De Servi
,
C.
,
Campanari
,
S.
,
Tizzanini
,
A.
, and
Pietra
,
C.
,
2013
, “
Enhancement of the Electrical Efficiency of Commercial Fuel Cell Units by Means of an Organic Rankine Cycle: A Case Study
,”
ASME J. Eng. Gas Turbines Power
,
135
(
4
), p.
042309
.10.1115/1.4023119
48.
Reynolds
,
W. C.
, and
Colonna
,
P.
,
2017
,
Vapor Power Plants
,
Cambridge University Press
,
New York
, Chap.
7
.
49.
Glassman
,
A.
,
1976
, “
Computer Program for Design and Analysis of Radial Inflow Turbines
,” NASA, Lewis Research Center, Washington D.C., Report No. TN D-8164.
50.
Baines
,
N.
,
1998
, “
A Meanline Prediction Method for Radial Turbine Efficiency in Axial and Radial Turbines
,”
Sixth International Conference on Turbocharging and Air Management Systems, London,
Nov. 3–5, pp.
3
5
.
51.
Pini
,
M.
,
De Servi
,
C.
,
Burigana
,
M.
,
Bahamonde
,
S.
,
Rubino
,
A.
,
Vitale
,
S.
, and
Colonna
,
P.
,
2017
, “
Fluid-Dynamic Design and Characterization of a Mini-Orc Turbine for Laboratory Experiments
,”
Energy Procedia
,
129
, pp.
1141
1148
.10.1016/j.egypro.2017.09.186
52.
Invernizzi
,
C.
,
Iora
,
P.
, and
Silva
,
P.
,
2007
, “
Bottoming Micro-Rankine Cycles for Micro-Gas Turbines
,”
Appl. Therm. Eng.
,
27
(
1
), pp.
100
110
.10.1016/j.applthermaleng.2006.05.003
53.
Benson
,
R. S.
,
1965
, “
An Analysis of the Losses in a Radial Gas Turbine
,”
Proc. Inst. Mech. Eng.
,
180
(
10
), pp.
41
53
.10.1243/PIME_CONF_1965_180_280_02
54.
Persico
,
G.
, and
Pini
,
M.
,
2016
, “
Fluid Dynamic Design of Organic Rankine Cycle Turbines
,”
Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications
,
E.
Macchi
, and
M.
Astolfi
, eds.,
Woodhead Publishing
,
Cambridge, UK
, pp.
253
297
.
55.
Bülten
,
B.
,
Althaus
,
W.
,
Weidner
,
E.
, and
Stoff
,
H.
,
2015
, “
Experimental and Numerical Flow Investigation of a Centripetal Supersonic Turbine for Organic Rankine Cycle Applications
,”
11th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics
, Madrid, Spain, March 23–25, pp.
23
27
.
56.
Macchi
,
E.
, and
Perdichizzi
,
A.
,
1981
, “
Efficiency Prediction for Axial-Flow Turbines Operating With Nonconventional Fluids
,”
J. Eng. Power
,
103
(
4
), pp.
718
724
.10.1115/1.3230794
57.
Wiesner
,
F.
,
1967
, “
A Review of Slip Factors for Centrifugal Impellers
,”
J. Eng. Power
,
89
(
4
), pp.
558
566
.10.1115/1.3616734
58.
Meitner
,
P. L.
, and
Glassman
,
A. J.
,
1983
, “
Computer Code for Off-Design Performance Analysis of Radial-Inflow Turbines With Rotor Blade Sweep
,” NASA, Lewis Research Center, Washington D.C., Report No. NASA-E-1625.
59.
Casati
,
E.
,
Colonna
,
P.
, and
Nannan
,
N. R.
,
2011
, “
Supercritical ORC Turbogenerators Coupled With Linear Solar Collectors
,”
ISES Solar World Congress 2011, Kassel, Germany
, Aug. 28–Sept. 2, pp.
4056
4068
.
60.
Xu
,
G.
,
Song
,
G.
,
Zhu
,
X.
,
Gao
,
W.
,
Li
,
H.
, and
Quan
,
Y.
,
2015
, “
Performance Evaluation of a Direct Vapor Generation Supercritical ORC System Driven by Linear Fresnel Reflector Solar Concentrator
,”
Appl. Therm. Eng.
,
80
, pp.
196
204
.10.1016/j.applthermaleng.2014.12.071
61.
Li
,
C.
,
Kosmadakis
,
G.
,
Manolakos
,
D.
,
Stefanakos
,
E.
,
Papadakis
,
G.
, and
Goswami
,
D.
,
2013
, “
Performance Investigation of Concentrating Solar Collectors Coupled With a Transcritical Organic Rankine Cycle for Power and Seawater Desalination Cogeneration
,”
Desalination
,
318
, pp.
107
117
.10.1016/j.desal.2013.03.026
62.
Prabhu
,
E.
,
2006
, “
Solar Trough Organic Rankine Electricity System (Stores) Stage 1: Power Plant Optimization and Economics
,” U.S. National Renewable Energy Laboratory, Lakewood, CO Report No. NREL/SR-550-39433.
63.
Rohlik
,
H. E.
,
1968
, “
Analytical Determination of Radial Inflow Turbine Design Geometry for Maximum Efficiency
,” NASA, Lewis Research Center, Washington D.C., Report No. NASA-TN-D-4384.
64.
Whitfield
,
A.
, and
Baines
,
N. C.
,
1990
,
Design of Radial Turbomachinery
,
Longman Scientific & Technical
,
Harlow, UK
.
65.
Barr
,
L.
,
Spence
,
S. W.
, and
Eynon
,
P.
,
2008
, “
Improved Performance of a Radial Turbine Through the Implementation of Back Swept Blading
,”
ASME
Paper No. GT2008-50064.10.1115/GT2008-50064
66.
Di Bella
,
F. A.
,
Di Nanno
,
L. R.
, and
Koplow
,
M. D.
,
1983
, “
Laboratory and On-Highway Testing of Diesel Organic Rankine Compound Long-Haul Vehicle Engine
,”
SAE
Paper No. 830122.10.4271/830122
67.
Brown
,
J. S.
,
Brignoli
,
R.
, and
Quine
,
T.
,
2015
, “
Parametric Investigation of Working Fluids for Organic Rankine Cycle Applications
,”
Appl. Therm. Eng.
,
90
, pp.
64
74
.10.1016/j.applthermaleng.2015.06.079
68.
Angelino
,
G.
,
Invernizzi
,
C.
, and
Macchi
,
E.
,
1991
, “
Organic Working Fluid Optimization for Space Power Cycles
,”
Modern Research Topics in Aerospace Propulsion
,
G.
Angelino
,
L.
De Luca
, and
W.
Sirignano
, eds.,
Springer-Verlag
,
Berlin
, pp.
297
326
.
69.
Invernizzi
,
C. M.
,
2013
,
Closed Power Cycles
(Lecture Notes in Energy, Vol.
11
),
Springer-Verlag
,
London
.
70.
Ginosar
,
D. M.
,
Petkovic
,
L. M.
, and
Guillen
,
D. P.
,
2011
, “
Thermal Stability of Cyclopentane as an Organic Rankine Cycle Working Fluid
,”
Energy Fuels
,
25
(
9
), pp.
4138
4144
.10.1021/ef200639r
71.
Invernizzi
,
C. M.
,
Iora
,
P.
,
Manzolini
,
G.
, and
Lasala
,
S.
,
2017
, “
Thermal Stability of n-Pentane, Cyclopentane and Toluene as Working Fluids in Organic Rankine Engines
,”
Appl. Therm. Eng.
,
121
, pp.
172
179
.10.1016/j.applthermaleng.2017.04.038
72.
Invernizzi
,
C. M.
, and
Bonalumi
,
D.
,
2016
, “
Thermal Stability of Organic Fluids for Organic Rankine Cycle Systems
,”
Organic Rankine Cycle (ORC) Power Systems: Technologies and Applications
,
E.
Macchi
, and
M.
Astolfi
, eds.,
Woodhead Publishing
, pp.
121
151
.
73.
Calderazzi
,
L.
, and
Colonna di Paliano
,
P.
,
1997
, “
Thermal Stability of R-134a, R-141b, R-13I1, R-7146, R-125 Associated With Stainless Steel as a Containing Material
,”
Int. J. Refrig.
,
20
(
6
), pp.
381
389
.10.1016/S0140-7007(97)00043-1
74.
United Nations,
2017
, “
Economic Commission for Europe. Secretariat
,”
Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
, 7th ed.,
United Nations Publications
,
New York/Geneva
.
75.
Chen
,
H.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2010
, “
A Review of Thermodynamic Cycles and Working Fluids for the Conversion of Low-Grade Heat
,”
Renewable Sustainable Energy Rev.
,
14
(
9
), pp.
3059
3067
.10.1016/j.rser.2010.07.006
76.
Eppinga
,
Q.
,
Ganassin
,
S.
, and
van Buijtenen
,
J.
,
2017
, “
Application and Operation of 40+ Triogen ORC Plants
,”
Energy Procedia
,
129
, pp.
684
691
.10.1016/j.egypro.2017.09.145
77.
Hawkins
,
L. A.
,
Zhu
,
L.
, and
Blumber
,
E. J.
,
2011
, “
Development of a 125 kW AMB Expander/Generator for Waste Heat Recovery
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072503
.10.1115/1.4002660
You do not currently have access to this content.