Abstract

Pressure gain combustion (PGC) is considered to be a potential technology to increase the cycle efficiency of gas turbine. As one viable candidate for PGC, rotating detonation engine (RDE) draws more attention due to its significant advances in continuous mode of operation. In practical, one of the basic challenges for RDE application is to reliably initiate detonation wave. For this purpose, both detonation initiation mechanism and enhancement approach are urgently needed to be understood. In this work, a toroidal shock wave focusing detonation initiator is presented. On this basis, the two-dimensional numerical simulations are carried out to investigate the detonation initiation characteristics by using the toroidal shock wave focusing. All of the flame acceleration, shock wave focusing, detonation wave forming, and propagation are analyzed in detail. The numerical results show that the toroidal shock wave focusing initiator developed in this study can rapidly realize the detonation initiation over a short distance and performs significantly better than the traditional smooth or obstructed tube based imitators under different operating conditions. Under the same operating condition, the novel developed initiator decreases time of 59.2% and distance of 84.7% for the smooth tube based initiator, and time of 52% and distance of 78.9% for the obstructed one. Besides, the multifield analysis indicates that both the local explosion induced by shock wave focusing in concave cavity and the entrainment vortex generated by shock wave and jet flame in front of diaphragm are important mechanisms to initiate detonation wave. This study is expected to enhance the understanding of the physical mechanism of shock wave focusing detonation initiation and contribute to the development of detonation propulsion technology.

References

1.
Kindracki
,
J.
,
Wolański
,
P.
, and
Gut
,
Z.
,
2011
, “
Experimental Research on the Rotating Detonation in Gaseous Fuels-Oxygen Mixtures
,”
Shock Waves
,
21
(
2
), pp.
75
84
.10.1007/s00193-011-0298-y
2.
Zheng
,
H. T.
,
Qi
,
L.
,
Zhao
,
N. B.
,
Li
,
Z. M.
, and
Liu
,
X.
,
2018
, “
A Thermodynamic Analysis of the Pressure Gain of Continuously Rotating Detonation Combustor for Gas Turbine
,”
Appl. Sci.-Basel
,
8
(
4
), pp.
1
19
.10.3390/app8040535
3.
Meng
,
Q.
,
Zhao
,
N.
,
Zheng
,
H.
,
Yang
,
J.
, and
Qi
,
L.
,
2018
, “
Numerical Investigation of the Effect of Inlet Mass Flow Rates on H2/Air Non-Premixed Rotating Detonation Wave
,”
Int. J. Hydrogen Energy
,
43
(
29
), pp.
13618
13631
.10.1016/j.ijhydene.2018.05.115
4.
Frolov
,
S. M.
,
Basevich
,
V. Y.
,
Aksenov
,
V. S.
, and
Polikhov
,
S. A.
,
2005
, “
Detonation Initiation by Controlled Triggering of Electric Discharges
,”
J. Propul. Power
,
21
(
1
), pp.
54
64
.10.2514/1.5969
5.
Frolov
,
S. M.
,
Basevich
,
V. Y.
,
Aksenov
,
V. S.
, and
Polikhov
,
S. A.
,
2005
, “
Optimization Study of Spray Detonation Initiation by Electric Discharges
,”
Shock Waves
,
14
(
3
), pp.
175
186
.10.1007/s00193-005-0263-8
6.
Zhang
,
B.
,
Ng
,
H. D.
, and
Lee
,
J. H. S.
,
2012
, “
Measurement and Scaling Analysis of Critical Energy for Direct Initiation of Gaseous Detonations
,”
Shock Waves
,
22
(
3
), pp.
275
279
.10.1007/s00193-011-0351-x
7.
Zhukov
,
V.
,
Rakitin
,
A.
, and
Starikovskii
,
A.
,
2007
, “
Detonation Initiation by High-Voltage Pulsed Discharges
,”
AIAA
Paper No. 2007-1029. 10.2514/6.2007-1029
8.
Porowski
,
R.
, and
Teodorczyk
,
A.
,
2013
, “
Experimental Study on DDT for Hydrogen-Methane-Air Mixtures in Tube With Obstacles
,”
J. Loss Prev. Process Ind.
,
26
(
2
), pp.
374
379
.10.1016/j.jlp.2012.06.004
9.
Silvestrini
,
M.
,
Genova
,
B.
,
Parisi
,
G.
, and
Leon Trujillo
,
F. J.
,
2008
, “
Flame Acceleration and DDT Run-Up Distance for Smooth and Obstacles Filled Tubes
,”
J. Loss Prev. Process Ind.
,
21
(
5
), pp.
555
562
.10.1016/j.jlp.2008.05.002
10.
Smirnov
,
N. N.
,
Penyazkov
,
O. G.
, and
Sevrouk
,
K. L.
,
2017
, “
Detonation Onset Following Shock Wave Focusing
,”
Acta Astronaut.
,
153
, pp.
114
130
.
11.
Chan
,
C. K.
,
Lau
,
D.
,
Thibault
,
P. A.
, et al.,
1990
, “
Ignition and Detonation Initiation by Shock Focusing
,”
AIP Conf. Proc.
,
208
(
1
), pp.
161
166
.10.1063/1.39434
12.
Gelfand
,
B. E.
,
Khomik
,
S. V.
,
Bartenev
,
A. M.
,
Medvedev
,
S. P.
,
Grönig
,
H.
, and
Olivier
,
H.
,
2000
, “
Detonation and Deflagration Initiation at the Focusing of Shock Waves in Combustible Gaseous Mixture
,”
Shock Waves
,
10
(
3
), pp.
197
204
.10.1007/s001930050007
13.
Bartenev
,
A. M.
,
Khomik
,
S. V.
,
Gelfand
,
B. E.
,
Grönig
,
H.
, and
Olivier
,
H.
,
2000
, “
Effect of Reflection Type on Detonation Initiation at Shock-Wave Focusing
,”
Shock Waves
,
10
(
3
), pp.
205
215
.10.1007/s001930050008
14.
Shugaev
,
F. V.
,
Serov
,
A. O.
,
Shtemenko
,
L. S.
,
Kishige
,
H.
, and
Nishida
,
M.
,
1999
, “
Formation of a Jet and Vortices Behind a Shock Wave Reflected From a Concave Body
,”
Shock Waves
,
9
(
1
), pp.
31
35
.10.1007/s001930050136
15.
Khomik
,
S. V.
,
Medvedev
,
S. P.
,
Polenov
,
A. N.
, and
Gelfand
,
B. E.
,
2007
, “
Conditions of Detonation Initiation by Focusing Shock Waves in a Combustible Gas Mixture
,”
Combust. Explos. Shock Waves
,
43
(
6
), pp.
697
702
.10.1007/s10573-007-0094-2
16.
Skews
,
B. W.
, and
Harald
,
K.
,
2007
, “
Flow Features Resulting From Shock Wave Impact on a Cylindrical Cavity
,”
J. Fluid Mech.
,
580
(
4
), pp.
481
493
.10.1017/S0022112007005757
17.
Murray
,
S.
, and
Lee
,
J. H.
,
1983
, “
On the Transmission of Planar Detonation to Cylindrical Detonation
,”
Combust. Flame
,
52
(
83
), pp.
269
289
.10.1016/0010-2180(83)90138-4
18.
Wang
,
B.
, He, H., and Yu, S. T. J.,
2005
, “
Direct Calculation of Wave Implosion for Detonation Initiation in Pulsed Detonation Engines
,”
AIAA
Paper No. 2005-1306.10.2514/6.2005-1306
19.
Wang
,
B.
,
He
,
H.
, and
Yu
,
S. T. J.
,
2005
, “
Direct Calculation of Wave Implosion for Detonation Initiation in Pulsed Detonation Engines
,”
AIAA J.
,
43
(
10
), pp.
2157
2169
.10.2514/1.11887
20.
Uemura
,
Y.
,
Hayashi
,
A. K.
,
Asahara
,
M.
, et al.,
2013
, “
Transverse Wave Generation Mechanism in Rotating Detonation
,”
Proc. Combust. Inst.
,
334
(
2
), pp.
1981
1988
.
21.
Liu
,
W.
,
2012
, “
Mechanism of Indirect Initiation of Detonation
,”
Combust. Flame
,
159
(
5
), pp.
1997
2007
.10.1016/j.combustflame.2011.12.021
22.
Mansouri
,
Z.
,
Aouissi
,
M.
, and
Boushaki
,
T.
,
2016
, “
Detached Eddy Simulation of High Turbulent Swirling Reacting Flow in a Premixed Model Burner
,”
Combust. Sci. Technol.
,
188
(
11–12
), p.
1777
.10.1080/00102202.2016.1211888
23.
Taylor
,
B.
,
Kessler
,
D.
,
Gamezo
,
V.
, et al.,
2012
, “
The Influence of Chemical Kinetics on the Structure of Hydrogen-Air Detonations
,”
AIAA
Paper No. 2012-0979. 10.2514/6.2012-0979
24.
Taylor
,
B.
,
Houim
,
R.
,
Kessler
,
D.
, et al.,
2013
, “
Detonation Initiation and Shock-Flame Interaction in Hydrogen-Air Mixtures
,”
AIAA
Paper No. 2013-1171. 10.2514/6.2013-1171
25.
Yu
,
S.
, and
Navarro-Martinez
,
S.
,
2015
, “
Modelling of Deflagration to Detonation Transition Using Flame Thickening
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
1955
1961
.10.1016/j.proci.2014.06.044
26.
Gamezo
,
V.
,
Ogawa
,
T.
, and
Oran
,
E.
,
2006
, “
Deflagration-to-Detonation Transition in H2-Air Mixtures: Effect of Blockage Ratio
,”
AIAA
Paper No. 2009-440. 10.2514/6.2009-440
27.
Khomik
,
S. V.
,
Medvedev
,
S. P.
,
Veyssiere
,
B.
,
Olivier
,
H.
,
Maksimova
,
O. G.
, and
Silnikov
,
M. V.
,
2014
, “
Initiation and Suppression of Explosive Processes in Hydrogen-Containing Mixtures by Means of Permeable Barriers
,”
Russ. Chem. Bull.
,
63
(
8
), pp.
1666
1676
.10.1007/s11172-014-0652-1
28.
Frolov
,
S. M.
,
Semenov
,
I. V.
,
Komissarov
,
P. V.
,
Utkin
,
P. S.
, and
Markov
,
V. V.
,
2007
, “
Reduction of the Deflagration-to-Detonation Transition Distance and Time in a Tube With Regular Shaped Obstacles
,”
Doklady Phys. Chem.
,
415
(
2
), pp.
209
213
.10.1134/S0012501607080027
29.
Oran
,
E. S.
, and
Gamezo
,
V. N.
,
2007
, “
Origins of the Deflagration-to-Detonation Transition in Gas-Phase Combustion
,”
Combust. Flame
,
148
(
1–2
), pp.
4
47
.10.1016/j.combustflame.2006.07.010
30.
Goodwin
,
G. B.
,
Houim
,
R. W.
, and
Oran
,
E. S.
,
2016
, “
Effect of Decreasing Blockage Ratio on DDT in Small Channels With Obstacles
,”
Combust. Flame
,
173
, pp.
16
26
.10.1016/j.combustflame.2016.07.029
31.
Goodwin
,
G. B.
,
Houim
,
R. W.
, and
Oran
,
E. S.
,
2017
, “
Shock Transition to Detonation in Channels With Obstacles
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
2717
2724
.10.1016/j.proci.2016.06.160
32.
Tsuboi
,
N.
,
Morii
,
Y.
, and
Hayashi
,
A. K.
,
2013
, “
Two-Dimensional Numerical Simulation on Galloping Detonation in a Narrow Channel
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
1999
2007
.10.1016/j.proci.2012.06.132
33.
Wintenberger
,
E.
,
Austin
,
J. M.
,
Cooper
,
M.
,
Jackson
,
S.
, and
Shepherd
,
J. E.
,
2003
, “
Analytical Model for the Impulse of Single-Cycle Pulse Detonation Tube
,”
J. Propul. Power
,
19
(
1
), pp.
22
38
.10.2514/2.6099
34.
Blanchard
,
R.
,
Arndt
,
D.
,
Grätz
,
R.
, and
Scheider
,
S.
,
2011
, “
Effect of Ignition Position on the Run-Up Distance to DDT for Hydrogen–Air Explosions
,”
J. Loss Prev. Process Ind.
,
24
(
2
), pp.
194
199
.10.1016/j.jlp.2010.12.007
35.
Kuznetsov
,
M.
,
Alekseev
,
V.
,
Matsukov
,
I.
, and
Dorofeev
,
S.
,
2005
, “
DDT in a Smooth Tube Filled With a Hydrogen–Oxygen Mixture
,”
Shock Waves
,
14
(
3
), pp.
205
215
.10.1007/s00193-005-0265-6
36.
Bychkov
,
V.
,
Akkerman
,
V.
,
Fru
,
G.
,
Petchenko
,
A.
, and
Eriksson
,
L.-E.
,
2007
, “
Flame Acceleration in the Early Stages of Burning in Tubes
,”
Combust. Flame
,
150
(
4
), pp.
263
276
.10.1016/j.combustflame.2007.01.004
37.
Naples
,
A.
,
Yu
,
S. T. J.
,
Hoke
,
J.
,
Busby
,
K.
, and
Schauer
,
F.
,
2013
, “
Pressure Scaling Effects on Ignition and Detonation Initiation in a Pulse Detonation Engine
,”
J. Recept. Signal Transduction Res.
,
19
(
1–4
), pp.
493
507
.10.2514/6.2009-1062
38.
Xiao
,
H.
,
Houim
,
R. W.
, and
Oran
,
E. S.
,
2015
, “
Formation and Evolution of Distorted Tulip Flames
,”
Combust. Flame
,
162
(
11
), pp.
4084
4101
.10.1016/j.combustflame.2015.08.020
39.
Xiao
,
H.
,
Wang
,
Q.
,
He
,
X.
,
Sun
,
J.
, and
Shen
,
X.
,
2011
, “
Experimental Study on the Behaviors and Shape Changes of Premixed Hydrogen-Air Flames Propagating in Horizontal Duct
,”
Int. J. Hydrogen Energy
,
36
(
10
), pp.
6325
6336
.10.1016/j.ijhydene.2011.02.049
40.
N'Konga
,
B.
,
Fernandez
,
G.
,
Guillard
,
H.
, et al.,
1993
, “
Numerical Investigations of the Tulip Flame Instability Comparisons With Experimental Results
,”
Combust. Sci. Technol.
,
87
(
1–6
), pp.
69
89
.10.1080/00102209208947208
41.
Xiao
,
H.
,
Houim
,
R. W.
, and
Oran
,
E. S.
,
2017
, “
Effects of Pressure Waves on the Stability of Flames Propagating in Tubes
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1577
1583
.10.1016/j.proci.2016.06.126
42.
Grogan
,
K. P.
,
Goldsborough
,
S. S.
, and
Ihme
,
M.
,
2015
, “
Ignition Regimes in Rapid Compression Machines
,”
Combust. Flame
,
162
(
8
), pp.
3071
3080
.10.1016/j.combustflame.2015.03.020
43.
Zhang
,
Y.
,
Fan
,
J. Y.
, and
Wang
,
D. Z.
,
2007
, “
Large-Eddy Simulation of Three-Dimensional Vortical Structures for an Impinging Transverse Jet in the Near Region
,”
J. Hydrodyn. Ser. B
,
19
(
3
), pp.
314
321
.10.1016/S1001-6058(07)60064-X
44.
Ahmed
,
U.
, and
Prosser
,
R.
,
2016
, “
Modelling Flame Turbulence Interaction in RANS Simulation of Premixed Turbulent Combustion
,”
Combust. Theory Modell.
,
20
(
1
), pp.
34
57
.10.1080/13647830.2015.1115130
45.
Hatanaka
,
K.
,
Saito
,
T.
, and
Takayama
,
K.
,
2012
, “
Numerical Studies of Shock Focusing Induced by Reflection of Detonation Waves Within a Hemispherical Implosion Chamber
,”
Shock Waves
,
22
(
6
), pp.
567
578
.10.1007/s00193-012-0411-x
46.
Massa
,
L.
,
Austin
,
J.
, and
Jackson
,
T.
,
2007
, “
Triple Point Shear-Layers in Gaseous Detonation Waves
,”
J. Fluid Mech.
,
586
(
586
), pp.
205
248
.10.1017/S0022112007007008
47.
Liang
,
Z.
, and
Bauwens
,
L.
,
2005
, “
Cell Structure and Stability of Detonations With a Pressure-Dependent Chain-Branching Reaction Rate Model
,”
Combust. Theory Modell.
,
9
(
1
), pp.
93
112
.10.1080/13647830500051885
48.
Ciccarelli
,
G.
,
Ginsberg
,
T.
,
Boccio
,
J.
,
Economos
,
C.
,
Sato
,
K.
, and
Kinoshita
,
M.
,
1994
, “
Detonation Cell Size Measurements and Predictions in Hydrogen-Air-Steam Mixtures at Elevated Temperatures
,”
Combust. Flame
,
99
(
2
), pp.
212
220
.10.1016/0010-2180(94)90124-4
49.
Hanana
,
M.
,
Lefebvre
,
M. H.
, and
Tiggelen
,
P. J. V.
,
2000
, “
Preliminary Experimental Investigation of the Pressure Evolution in Detonation Cells
,”
Exp. Therm. Fluid Sci.
,
21
(
1–3
), pp.
64
70
.10.1016/S0894-1777(99)00055-2
50.
Zhao
,
H.
,
Lee
,
J. H. S.
,
Lee
,
J.
, and
Zhang
,
Y.
,
2016
, “
Quantitative Comparison of Cellular Patterns of Stable and Unstable Mixtures
,”
Shock Waves
,
26
(
5
), pp.
621
13
.10.1007/s00193-016-0673-9
51.
Lefebvre
,
M.
,
Oran
,
E.
,
Kailasanath
,
K.
, and
Vantiggelen
,
P.
,
1993
, “
The Influence of the Heat Capacity and Diluent on Detonation Structure
,”
Combust. Flame
,
95
(
1–2
), pp.
206
218
.10.1016/0010-2180(93)90062-8
52.
Ciccarelli
,
G.
,
Boccio
,
J. L.
,
Ginsberg
,
T.
, and
Tagawa
,
H.
,
1996
, “
The Influence of Initial Temperature on Flame Acceleration and Deflagration-to-Detonation Transition
,”
Symp. Combust.
,
26
(
2
), pp.
2973
2979
.10.1016/S0082-0784(96)80140-8
53.
Ciccarelli
,
G.
,
Fowler
,
C. J.
, and
Bardon
,
M.
,
2005
, “
Effect of Obstacle Size and Spacing on the Initial Stage of Flame Acceleration in a Rough Tube
,”
Shock Waves
,
14
(
3
), pp.
161
166
.10.1007/s00193-005-0259-4
You do not currently have access to this content.