Abstract

This paper describes an aerodynamic design optimization of a highly loaded compressor stator blade using parameterized free-form deformation (FFD). The optimization methodology presented utilizes a B-spline-based FFD control volume to map the blade from the object space to the parametric space via transformation operations in order to perturb the blade surface. Coupled with a multi-objective genetic algorithm (MOGA) and a Gaussian process-based response surface method (RSM), a fully automated iterative loop was used to run the optimization on a fitted correlation function. A weighted average reduction of 6.1% and 36.9% in total pressure loss and exit whirl angle was achieved, showing a better compromise of objective functions with smoother blade shape than other results obtained in the open literature. Data mining of the Pareto set of optimums revealed four groups of data interactions of which some design variables were found to have skewed scatter relationship with objective functions and can be redefined for further improvement of performance. Analysis of the flow field showed that the thinning of the blade at midspan and reduction in camber distribution were responsible for the elimination of the focal-type separation vortex by redirecting the secondary flow in an axially forward direction toward the midspan and near the hub endwall downstream. Furthermore, the reduction in exit whirl angle especially at the shroud was due to the mild bow shape which generated radial forces on the flow field thereby reducing the flow diffusion rate at the suction surface corner. This effect substantially delayed or eliminated the formation of corner separation at design and off-design operating conditions. Parameterized FFD was found to have superior benefits of smooth surface generation with low number of design variables while maintaining a good compromise between objective functions when coupled with a genetic algorithm.

References

References
1.
Horlock
,
J. H.
, and
Lakshminarayana
,
B.
,
1973
, “
Secondary Flows: Theory, Experiment, and Application in Turbomachinery Aerodynamics
,”
Annu. Rev. Fluid Mech.
,
5
(
1
), pp.
247
280
.10.1146/annurev.fl.05.010173.001335
2.
Bloxham
,
M. J.
, and
Bons
,
J. P.
,
2013
, “
A Global Approach to Turbomachinery Flow Control: Passage Vortex Control
,”
ASME. J. Turbomach.
,
136
(
4
), p.
041003
.10.1115/1.4024686
3.
Jang
,
C. M.
, and
Kim
,
K. Y.
,
2005
, “
Optimization of a Stator Blade Using Response Surface Method in a Single-Stage Transonic Axial Compressor
,”
Proc. Inst. Mech. Eng. Part A
,
219
(
8
), pp.
595
603
.10.1243/095765005X31298
4.
Gourdain
,
N.
, and
Leboeuf
,
F.
,
2009
, “
Unsteady Simulation of an Axial Compressor Stage With Casing and Blade Passive Treatments
,”
ASME J. Turbomach.
,
131
(
2
), p.
021013
.10.1115/1.2988156
5.
Gmelin
,
C.
,
Zander
,
V.
,
Hecklau
,
M.
,
Thiele
,
F.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2012
, “
Active Flow Control Concepts on a Highly Loaded Subsonic Compressor Cascade: Résumé of Experimental and Numerical Results
,”
ASME J. Turbomach.
,
134
(
6
), p.
061021
.10.1115/1.4006308
6.
Staats
,
M.
, and
Nitsche
,
W.
,
2015
, “
Active Control of the Corner Separation on a highly loaded Compressor Cascade With Periodic Non-Steady Boundary Conditions by Means of Fluidic Actuators
,”
ASME J. Turbomach.
,
138
(
3
), p.
031004
.10.1115/1.4031934
7.
Weingold
,
H. D.
,
Neubert
,
R. J.
,
Behlke
,
R. F.
, and
Potter
,
G. E.
,
1995
, “
Reduction of Compressor Stator Endwall Losses Through the Use of Bowed Stators
,”
ASME
Paper No. GT1995-380.
8.
Sasaki
,
T. T.
, and
Breugelmans
,
F. F.
,
1998
, “
Comparison of Sweep and Dihedral Effects on Compressor Cascade Performance
,”
ASME J. Turbomach.
,
120
(
3
), pp.
454
463
.10.1115/1.2841738
9.
Poehler
,
T.
,
Niewoehner
,
J.
,
Jeschke
,
P.
, and
Guendogdu
,
Y.
,
2015
, “
Investigation of Non-Axisymmetric Endwall Contouring and Three-Dimensional Airfoil Design in a 1.5-Stage Axial Turbine—Part I: Design and Novel Numerical Analysis Method
,”
ASME J. Turbomach.
,
137
(
8
), p.
081009
.10.1115/1.4029476
10.
Hu
,
S.
,
Lu
,
X.
,
Zhang
,
H.
,
Zhu
,
J.
, and
Xu
,
Q.
,
2010
, “
Numerical Investigation of a High-Subsonic Axial-Flow Compressor Rotor With Non-Axisymmetric Hub Endwall
,”
J. Therm. Sci.
,
19
(
1
), pp.
14
20
.10.1007/s11630-010-0014-8
11.
Dorfner
,
C.
,
Hergt
,
A.
,
Nicke
,
E.
, and
Moenig
,
R.
,
2011
, “
Advanced Non-Axisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator—Part I: Principal Cascade Design and Compressor Application
,”
ASME J. Turbomach.
,
133
(
2
), p.
021026
.10.1115/1.4001223
12.
Hergt
,
A.
,
Dorfner
,
C.
,
Steinert
,
W.
,
Nicke
,
E.
, and
Schreiber
,
H. A.
,
2011
, “
Advanced Non-Axisymmetric Endwall Contouring for Axial Compressors by Generating an Aerodynamic Separator—Part II: Experimental and Numerical Cascade Investigation
,”
ASME J. Turbomach.
,
133
(
2
), p.
021027
.10.1115/1.4001224
13.
Varpe
,
M. K.
, and
Pradeep
,
A. M.
,
2015
, “
Benefits of Nonaxisymmetric Endwall Contouring in a Compressor Cascade With a Tip Clearance
,”
ASME J. Fluids Eng.
,
137
(
5
), p.
051101
.10.1115/1.4028996
14.
Samareh
,
J.
,
2004
, “
Aerodynamic Shape Optimization Based on Free-Form Deformation
,”
AIAA
Paper No. 2004-4630.10.2514/6.2004-4630
15.
Jakobsson
,
S.
, and
Amoignon
,
O.
,
2007
, “
Mesh Deformation Using Radial Basis Functions for Gradient-Based Aerodynamic Shape Optimization
,”
J. Comp. Fluid
,
36
(
6
), pp.
1119
1136
.10.1016/j.compfluid.2006.11.002
16.
Li
,
L.
,
Jiao
,
J.
,
Sun
,
S.
,
Zhao
,
Z.
, and
Kang
,
J.
,
2019
, “
Aerodynamic Shape Optimization of a Single Turbine Stage Based on Parameterized Free-Form Deformation With Mapping Design Parameters
,”
Energy
,
169
, pp.
444
455
.10.1016/j.energy.2018.12.031
17.
John
,
A.
,
Shahpar
,
S.
, and
Qin
,
N.
,
2017
, “
Novel Compressor Blade Shaping Through a Free-Form Method
,”
ASME J. Turbomach.
,
139
(
8
), p.
081002
.10.1115/1.4035833
18.
Okui
,
H.
,
Verstraete
,
T.
,
Van den Braembussche
,
R. A.
, and
Alsalihi
,
Z.
,
2013
, “
Three-Dimensional Design and Optimization of a Transonic Rotor in Axial Flow Compressors
,”
ASME J. Turbomach.
,
135
(
3
), p.
031009
.10.1115/1.4006668
19.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R. A.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Microgas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.10.1115/1.3144162
20.
Vasilopoulos
,
I.
,
Flassig
,
P.
, and
Meyer
,
M.
,
2017
, “
CAD-Based Aerodynamic Optimization of a Compressor Stator Using Conventional and Adjoint-Driven Approaches
,”
ASME
Paper No. GT2017-63199.10.1115/GT2017-63199
21.
Li
,
C.
,
Guo
,
Z.
,
Song
,
L.
,
Li
,
J.
, and
Feng
,
Z.
,
2017
, “
Design Optimization of a 3D Parameterized Vane Cascade With Non-Axisymmetric Endwall Based on a Modified EGO Algorithm and Data Mining Techniques
,”
ASME
Paper No. GT2017-63738.10.1115/GT2017-63738
22.
Guo
,
Z.
,
Song
,
L.
,
Zhou
,
Z.
,
Li
,
J.
, and
Feng
,
Z.
,
2015
, “
Multi-Objective Aerodynamic Optimization Design and Data Mining of a High Pressure Ratio Centrifugal Impeller
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
092602
.10.1115/1.4029882
23.
Müller
,
J. D.
,
2016
, “
Test Case 3: TU Berlin TurboLab Stator
,” Queen Mary University of London, London, UK, accessed Feb. 10, 2019, http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/
24.
Beselt
,
C.
,
Eck
,
M. M.
, and
Peitsch
,
D. D.
,
2014
, “
Three-Dimensional Flow Field in Highly Loaded Compressor Cascade
,”
ASME J. Turbomach.
,
136
(
10
), p.
101007
.10.1115/1.4028083
25.
Nerger
,
D.
,
Saathoff
,
H.
,
Radespiel
,
R.
,
Gümmer
,
V.
, and
Clemen
,
C.
,
2012
, “
Experimental Investigation of Endwall and Suction Side Blowing in a Highly Loaded Compressor Stator Cascade
,”
ASME J. Turbomach.
,
134
(
2
), p.
021010
.10.1115/1.4003254
26.
ANSYS
,
2009
, “
ANSYS CFX-Solver Theory Guide, Version 12.1
,” ANSYS, Canonsburg, PA.
27.
Benini
,
E.
,
2004
, “
Three-Dimensional Multi-Objective Design Optimization of a Transonic Compressor Rotor
,”
J. Propul. Power
,
20
(
3
), pp.
559
565
.10.2514/1.2703
28.
Ameri
,
A. A.
,
2010
, “
NASA Rotor 37 CFD Code Validation
,” The Ohio State University, Columbus, OH, Report No. NASA/CR-2010- 216235.
29.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-Form Deformation of Solid Geometric Models
,”
ACM SIGGRAPH
,
20
(
4
), pp.
151
160
.10.1145/15886.15903
30.
Feng
,
J.
,
Nishita
,
T.
,
Jin
,
X.
, and
Peng
,
Q.
,
2002
, “
B-Spline Free-Form Deformation of Polygonal Object as Trimmed Bezier Surfaces
,”
Visual Comp.
,
18
(
8
), pp.
493
510
.10.1007/s00371-002-0171-1
31.
Lee
,
C.
,
Koo
,
D.
, and
Zingg
,
D. W.
,
2017
, “
Comparison of B-Spline Surface and Free-Form Deformation Geometry Control for Aerodynamic Optimization
,”
AIAA J.
,
55
(
1
), pp.
228
240
.10.2514/1.J055102
32.
Mykhaskiv
,
O.
,
Banović
,
M.
,
Auriemma
,
S.
,
Mohanamuraly
,
P.
,
Walther
,
A.
,
Legrand
,
H.
, and
Müller
,
J. D.
,
2018
, “
NURBS-Based and Parametric-Based Shape Optimization With Differentiated CAD Kernel
,”
Comput. Aided Des. Appl.
,
15
(
6
), pp.
1
11
.10.1080/16864360.2018.1462881
33.
Adams
,
B. M.
,
Bauman
,
L. E.
,
Bohnhoff
,
W. J.
,
Dalbey
,
K. R.
,
Ebeida
,
M. S.
,
Eddy
,
J. P.
,
Eldred
,
M. S.
,
Hough
,
P. D.
,
Hu
,
K. T.
,
Jakeman
,
J. D.
,
Swiler
,
L. P.
, and
Vigil
,
D. M.
,
2009
, “
DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization, Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.4 User's Manual
,” Sandia, Albuquerque, NM, Report No. SAND2010-2183.
34.
Friendship Systems AG
, 2018, “
Product Overview
,” Potsdam, Germany, accessed Apr. 5, 2018, https://www.caeses.com/products/caeses/overview/
35.
Yamada
,
K.
,
Furukawa
,
M.
,
Tamura
,
Y.
,
Saito
,
S.
,
Matsuoka
,
A.
, and
Nakayama
,
K.
,
2017
, “
Large-Scale Detached-Eddy Simulation Analysis of Stall Inception Process in a Multistage Axial Flow Compressor
,”
ASME J. Turbomach.
,
139
(
7
), p.
071002
.10.1115/1.4035519
36.
Buendia-Ramon
,
V.
,
Soria-Olivas
,
E.
, and
Martin-Guerrero
,
J. D.
,
2015
, “
Living for SOM
,” Universitat de Valencia, Valencia, Spain, accessed Jan. 29, 2019, http://www.livingforsom.com/
37.
Beale
,
R.
, and
Jackson
,
T.
,
1990
,
Neural Computing-an Introduction
,
CRC Press
, Boca Raton, FL.
38.
Hameed
,
A. A.
,
Karlik
,
B.
,
Salman
,
M. S.
, and
Eleyan
,
G.
,
2019
, “
Robust Adaptive Learning Approach to Self-Organizing Maps
,”
Knowl-Based Syst.
,
171
(
9
), pp.
25
36
.10.1016/j.knosys.2019.01.011
39.
Lemke
,
F.
, and
Müller
,
J. A.
,
2003
, “
Self-Organising Data Mining
,”
Syst. Anal. Model Simulat.
,
43
(
2
), pp.
231
240
.10.1080/0232929031000136135
You do not currently have access to this content.