Abstract

Uncertainty quantification (UQ) is becoming an essential attribute for development of computational tools in gas turbine combustion systems. Prediction of emissions with a variety of gaseous fuels and uncertain conditions requires probabilistic modeling tools, especially at part load conditions. The aim of this paper was to develop a computationally efficient tool to integrate uncertainty, sensitivity, and reliability analyses of CO and NOx emissions for a practical swirl-stabilized premixed burner. Sampling-based method (SBM), nonintrusive polynomial chaos expansion (NIPCE) based on point collocation method (PCM), Sobol sensitivity indices, and first-order reliability method (FORM) approaches are integrated with a chemical reactor network (CRN) model to develop a UQ-enabled emissions prediction tool. The CRN model consisting of a series of perfectly stirred reactors (PSRs) to model CO and NOx is constructed in Cantera. Surrogate models are developed using NIPCE-PCM approach and compared with the results of CRN model. The surrogate models are then used to perform global sensitivity and reliability analyses. The results show that the surrogate models substantially reduce the required computational costs by 2 to 3 orders of magnitude in comparison with the SBM to calculate sensitivity indices, importance factors and perform reliability analysis. Moreover, the results obtained by the NIPCE-PCM approach are more accurate in comparison with the SBM. Therefore, the developed UQ-enabled emissions prediction tool based on CRN and NIPCE-PCM approaches can be used for practical combustion systems as a reliable and computationally efficient framework to conduct probabilistic modeling of emissions.

References

References
1.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
3rd ed.
,
CRC Press
,
Boca Raton, FL
.
2.
Hosder
,
S.
,
Walters
,
R. W.
, and
Balch
,
M.
,
2010
, “
Point-Collocation Nonintrusive Polynomial Chaos Method for Stochastic Computational Fluid Dynamics
,”
AIAA J.
,
48
(
12
), pp.
2721
2730
.10.2514/1.39389
3.
Abbott
,
D. J.
,
Bowers
,
J. P.
, and
James
,
S. R.
,
2012
, “
The Impact of Natural Gas Composition Variations on the Operation of Gas Turbines for Power Generation
,”
The Future of Gas Turbine Technology-Sixth International Conference
, Brussels, Belgium, Oct. 17–18.
4.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R.
,
2018
, “
Uncertainty Quantification of Nox Emission Due to Operating Conditions and Chemical Kinetic Parameters in a Premixed Burner
,”
ASME J. Eng. Gas Turbines Power
,
140
(
12
), p.
121005
.10.1115/1.4040897
5.
Allaire
,
D.
,
Noel
,
G.
,
Willcox
,
K.
, and
Cointin
,
R.
,
2014
, “
Uncertainty Quantification of an Aviation Environmental Toolsuite
,”
Reliab. Eng. Syst. Saf.
,
126
, pp.
14
24
.10.1016/j.ress.2014.01.002
6.
Ehrhardt
,
K.
,
Toqan
,
P.
,
Jansohn
,
P.
,
Teare
,
J. D.
,
Beer
,
J. M.
,
Sybon
,
G.
, and
Leuckel
,
W.
,
1998
, “
Reburning in a Pilot Scale Furnace Using Detailed Reaction Kinetics
,”
Combust. Sci. Technol.
,
131
(
1–6
), pp.
131
146
.10.1080/00102209808935758
7.
Faravelli
,
T.
,
Bua
,
L.
,
Frassoldati
,
A.
,
Antifora
,
A.
,
Tognotti
,
L.
, and
Ranzi
,
E.
,
2001
, “
A New Procedure for Predicting NOx Emissions From Furnaces
,”
Comput. Chem. Eng.
,
25
(
4–6
), pp.
613
618
.10.1016/S0098-1354(01)00641-X
8.
Falcitelli
,
M.
,
Pasini
,
S.
,
Rossi
,
N.
, and
Tognotti
,
L.
,
2002
, “
CFD + Reactor Network Analysis: An Integrated Methodology for the Modeling and Optimisation of Industrial Systems for Energy Saving and Pollution Reduction
,”
Appl. Therm. Eng.
,
22
(
8
), pp.
971
979
.10.1016/S1359-4311(02)00014-5
9.
Falcitelli
,
M.
,
Tognotti
,
L.
, and
Pasini
,
S.
,
2002
, “
An Algorithm for Extracting Chemical Reactor Network Models From CFD Simulation of Industrial Combustion Systems
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
27
42
.10.1080/713712951
10.
Frassoldati
,
A.
,
Frigerio
,
S.
,
Colombo
,
E.
,
Inzoli
,
F.
, and
Faravelli
,
T.
,
2005
, “
Determination of NOx Emissions From Strong Swirling Confined Flames With an Integrated CFD-Based Procedure
,”
Chem. Eng. Sci.
,
60
(
11
), pp.
2851
2869
.10.1016/j.ces.2004.12.038
11.
Fichet
,
V.
,
Kanniche
,
M.
,
Plion
,
P.
, and
Gicquel
,
O.
,
2010
, “
A Reactor Network Model for Predicting NOx Emissions in Gas Turbines
,”
Fuel
,
89
(
9
), pp.
2202
2210
.10.1016/j.fuel.2010.02.010
12.
Cuoci
,
A.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Faravelli
,
T.
,
Ranzi
,
E.
, and
Buzzi-Ferraris
,
G.
,
2013
, “
Numerical Modeling of NOx Formation in Turbulent Flames Using a Kinetic Post-Processing Technique
,”
Energy Fuels
,
27
(
2
), pp.
1104
1122
.10.1021/ef3016987
13.
Stagni
,
A.
,
Cuoci
,
A.
,
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2014
, “
A Fully Coupled, Parallel Approach for the Post-Processing of CFD Data Through Reactor Network Analysis
,”
Comput. Chem. Eng.
,
60
, pp.
197
212
.10.1016/j.compchemeng.2013.09.002
14.
Monaghan
,
R. F. D.
,
Tahir
,
R.
,
Bourque
,
G.
,
Gordon
,
R. L.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Frassoldati
,
A.
, and
Curran
,
H. J.
,
2014
, “
Detailed Emissions Prediction for a Turbulent Swirling Nonpremixed Flame
,”
Energy Fuels
,
28
(
2
), pp.
1470
1488
.10.1021/ef402057w
15.
Monaghan
,
R. F. D.
,
Tahir
,
R.
,
Cuoci
,
A.
,
Bourque
,
G.
,
Furi
,
M.
,
Gordon
,
R. L.
,
Faravelli
,
T.
,
Frassoldati
,
A.
, and
Curran
,
H. J.
,
2012
, “
Detailed Multi-Dimensional Study of Pollutant Formation in a Methane Diffusion Flame
,”
Energy Fuels
,
26
(
3
), pp.
1598
1611
.10.1021/ef201853k
16.
Andreini
,
A.
, and
Facchini
,
B.
,
2004
, “
Gas Turbines Design and Off-Design Performance Analysis With Emissions Evaluation
,”
ASME J. Eng. Gas Turbines Power
,
126
(
1
), pp.
83
91
.10.1115/1.1619427
17.
Orbegoso
,
E. M. M.
,
Romeiro
,
C. D.
,
Ferreira
,
S. B.
, and
Figueira Da Silva
,
L. F.
,
2011
, “
Emissions and Thermodynamic Performance Simulation of an Industrial Gas Turbine
,”
J. Propul. Power
,
27
(
1
), pp.
78
93
.10.2514/1.47656
18.
Charest
,
M. R. J.
,
Gauthier
,
J. E. D.
, and
Huang
,
X.
,
2006
, “
Design of a Lean Premixed Prevaporized Can Combustor
,”
ASME
Paper No. 2006-06-91004.
19.
Novosselov
,
I. V.
, and
Malte
,
P. C.
,
2006
, “
Chemical Reactor Network Application to Emissions Prediction for Industial Dle Gas Turbine
,”
ASME
Paper No. GT2006-90282.10.1115/GT2006-90282
20.
Göke
,
S.
,
Füri
,
M.
,
Bourque
,
G.
,
Bobusch
,
B.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Schimek
,
S.
,
Terhaar
,
S.
, and
Paschereit
,
C. O.
,
2013
, “
Influence of Steam Dilution on the Combustion of Natural Gas and Hydrogen in Premixed and Rich-Quench-Lean Combustors
,”
Fuel Process. Technol.
,
107
, pp.
14
22
.10.1016/j.fuproc.2012.06.019
21.
Göke
,
S.
,
Schimek
,
S.
,
Terhaar
,
S.
,
Reichel
,
T.
,
Göckeler
,
K.
,
Krüger
,
O.
,
Fleck
,
J.
,
Griebel
,
P.
, and
Oliver Paschereit
,
C.
,
2014
, “
Influence of Pressure and Steam Dilution on NOx and CO Emissions in a Premixed Natural Gas Flame
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
091508
.10.1115/1.4026942
22.
Stathopoulos
,
P.
,
Kuhn
,
P.
,
Wendler
,
J.
,
Tanneberger
,
T.
,
Terhaar
,
S.
,
Paschereit
,
C. O.
,
Schmalhofer
,
C.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2017
, “
Emissions of a Wet Premixed Flame of Natural Gas and a Mixture With Hydrogen at High Pressure
,”
ASME J. Eng. Gas Turbines Power
,
139
(4), p.
041507
.10.1115/1.4034687
23.
Goh
,
E.
,
Sirignano
,
M.
,
Li
,
J.
,
Nair
,
V.
,
Emerson
,
B.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2019
, “
Prediction of Minimum Achievable NOx Levels for Fuel-Staged Combustors
,”
Combust. Flame
,
200
, pp.
276
285
.10.1016/j.combustflame.2018.11.027
24.
Yousefian
,
S.
,
Bourque
,
G.
, and
Monaghan
,
R. F. D.
,
2017
, “
Review of Hybrid Emissions Prediction Tools and Uncertainty Quantification Methods for Gas Turbine Combustion Systems
,”
ASME
Paper No. GT2017-64271.10.1115/GT2017-64271
25.
Najm
,
H. N.
,
Reagan
,
M. T.
, and
Knio
,
O. M.
,
2003
, “
Uncertainty Quantification in Reacting Flow Modelling
,” Sandia National Laboratories, Albuquerque, NM, Report No. SAND2003-8598.
26.
Sheen
,
D. A.
,
You
,
X.
,
Wang
,
H.
, and
Lovas
,
T.
,
2009
, “
Spectral Uncertainty Quantification, Propagation and Optimization of a Detailed Kinetic Model for Ethylene Combustion
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
535
542
.10.1016/j.proci.2008.05.042
27.
Najm, Debusschere, and Marzouk
,
2009
, “
Uncertainty Quantification in Chemical Systems
,”
Int. J. Numer. Methods Eng.
,
80
, pp.
789
814
.10.1002/nme.2551
28.
Wang
,
H.
, and
Sheen
,
D. A.
,
2015
, “
Combustion Kinetic Model Uncertainty Quantification, Propagation and Minimization
,”
Prog. Energy Combust. Sci.
,
47
, pp.
1
31
.10.1016/j.pecs.2014.10.002
29.
Musaefendic
,
H.
,
Mery
,
Y.
, and
Noel
,
T.
,
2015
, “
An Uncertainty Quantification Framework Coupled With a 1D Physics-Based Model for the Prediction of NOx Emissions in a RQL Combustion Chamber
,”
ASME
Paper No. GT2015-43468.10.1115/GT2015-43468
30.
Rezvani
,
R.
,
Denny
,
R.
, and
Mavris
,
D.
,
2009
, “
A Design-Oriented Semi-Analytical Emissions Prediction Method for Gas Turbine Combustors
,”
AIAA
Paper No. 2009-704.10.2514/6.2009-704
31.
Oliphant
,
T. E.
,
2007
, “
Python for Scientific Computing
,”
Comput. Sci. Eng.
,
9
(
3
), pp.
10
20
.10.1109/MCSE.2007.58
32.
Millman
,
K. J.
, and
Aivazis
,
M.
,
2011
, “
Python for Scientists and Engineers
,”
Comput. Sci. Eng.
,
13
(
2
), pp.
9
12
.10.1109/MCSE.2011.36
33.
Durocher
,
A.
,
Versailles
,
P.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2019
, “
Impact of Kinetic Uncertainties on Accurate Prediction of NO Concentrations in Premixed Alkane-Air Flames
,”
Combust. Sci. Technol.
, pp.
1
27
.10.1080/00102202.2019.1604515
34.
Eldred
,
M.
,
2009
, “
Recent Advances in Non-Intrusive Polynomial Chaos and Stochastic Collocation Methods for Uncertainty Analysis and Design
,”
AIAA
Paper No. 2009-2274.10.2514/6.2009-2274
35.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.10.1016/j.ress.2007.04.002
36.
Herman
,
J. D.
, and
Reed
,
P.
,
2017
, “SALib Documentation,”
J. Open Source Softw.
,
2
(9), pp.
1
97
.
37.
Sudret
,
B.
,
2007
, “
Uncertainty Propagation and Sensitivity Analysis in Mechanical Models–Contributions to Structural Reliability and Stochastic Spectral Methods
,” Habilitation à diriger des recherches, Université Blaise Pascal, Clermont-Ferrand, France, pp.
1
229
.
38.
Baudin
,
M.
,
Dutfoy
,
A.
,
Looss
,
B.
, and
Popelin
,
A. L.
,
2015
, “
OpenTURNS: An Industrial Software for Uncertainty Quantification in Simulation
,”
Handbook of Uncertainty Quantification
, pp.
2001
2038
.
39.
Terhaar
,
S.
,
Katharina
,
G.
,
Schimek
,
S.
,
Sebastian
,
G.
, and
Paschereit
,
C. O.
,
2011
, “
Non-Reacting and Reacting Flow in a Swirl-Stabilized Burner for Ultra-Wet Combustion
,”
AIAA
Paper No. 2011-3584.10.2514/6.2011-3584
40.
Fleck
,
J. M.
,
Griebel
,
P.
,
Steinberg
,
A. M.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Ciani
,
A.
,
2010
, “
Experimental Investigation of a Generic, Fuel Flexible Reheat Combustor at Gas Turbine Relevent Operating Conditions
,”
ASME
Paper No. GT2010-22722.10.1115/GT2010-22722
41.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2017
, “
Cantera: An Object- Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” accessed July 19, 2019, http://www.cantera.org, Version 2.3.0.
42.
Barlow
,
R. S.
,
Karpetis
,
A. N.
,
Frank
,
J. H.
, and
Chen
,
J. Y.
,
2001
, “
Scalar Profiles and NO Formation in Laminar Opposed-Flow Partially Premixed Methane/Air Flames
,”
Combust. Flame
,
127
(
3
), pp.
2102
2118
.10.1016/S0010-2180(01)00313-3
43.
Bulat
,
G.
,
Jones
,
W. P.
, and
Marquis
,
A. J.
,
2014
, “
NO and CO Formation in an Industrial Gas-Turbine Combustion Chamber Using LES With the Eulerian Sub-Grid PDF Method
,”
Combust. Flame
,
161
(
7
), pp.
1804
1825
.10.1016/j.combustflame.2013.12.028
44.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
, Jr.
Lissianski
,
V. V.
, and
Qin
,
Z.
, 1999, “GRI-MECH 3.0,” accessed July 19, 2019, http://www.me.berkeley.edu/gri_mech/
45.
Feinberg
,
J.
, and
Langtangen
,
H. P.
,
2015
, “
Chaospy: An Open Source Tool for Designing Methods of Uncertainty Quantification
,”
J. Comput. Sci.
,
11
, pp.
46
57
.10.1016/j.jocs.2015.08.008
46.
Stopper
,
U.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stohr
,
M.
,
Aigner
,
M.
, and
Bulat
,
G.
,
2013
, “
Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape
,”
Combust. Flame
,
160
(
10
), pp.
2103
2118
.10.1016/j.combustflame.2013.04.005
You do not currently have access to this content.