The characterization and mitigation of thermoacoustic combustion instabilities in gas turbine engines are necessary to reduce pollutant emissions, premature wear, and component failure associated with unstable flames. Fuel staging, a technique in which the fuel flow to a multinozzle combustor is unevenly distributed between the nozzles, has been shown to mitigate the intensity of self-excited combustion instabilities in multiple nozzle combustors. In our previous work, we hypothesized that staging suppresses instability through a phase-cancelation effect in which the heat release rate from the staged nozzle oscillates out of phase with that of the other nozzles, leading to destructive interference that suppresses the instability. This previous theory, however, was based on chemiluminescence imaging, which is a line-of-sight integrated technique. In this work, we use high-speed laser-induced fluorescence to further investigate instability suppression in two staging configurations: center-nozzle and outer-nozzle staging. An edge-tracking algorithm is used to compute local flame edge displacement as a function of time, allowing instability-driven edge oscillation phase coherence and other instantaneous flame dynamics to be spectrally and spatially resolved. Analysis of flame edge oscillations shows the presence of convecting coherent fluctuations of the flame edge caused by periodic vortex shedding. When the system is unstable, these two flame edges oscillate together as a result of high-intensity longitudinal-mode acoustic oscillations in the combustor that drive periodic vortex shedding at each of the nozzle exits. In the stable cases, however, the phase between the oscillations of the center and outer flame edges is greater than 90 deg (∼114 deg), suggesting that the phase-cancelation hypothesis may be valid. This analysis allows a better understanding of the instantaneous flame dynamics behind flame edge oscillation phase offset and fuel staging-based instability suppression.

References

References
1.
McDonell
,
V.
,
2016
, “
Lean Combustion in Gas Turbines
,”
Lean Combustion
,
Academic Press
, London, UK, pp.
147
201
.
2.
Zinn
,
B.
, and
Lieuwen
,
T.
,
2005
, “
Combustion Instabilities: Basic Concepts
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
,
AIAA
, Reston, VA, pp.
3
24
.
3.
Rayleigh
,
J. W. S.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
, pp.
319
321
.
4.
Richards
,
G.
, and
Straub
,
D.
,
2005
, “
Passive Control of Combustion Instabilities in Stationary Gas Turbines
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, T. Lieuwen and V. Yang Eds.,
AIAA
, Reston, VA, pp.
533
575
.
5.
McManus
,
K.
,
Poinsot
,
T.
, and
Candel
,
S.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.
6.
Herrmann
,
J.
, and
Hoffmann
,
S.
,
2005
, “
Implementation of Active Control in a Full-Scale Gas-Turbine Combustor
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling
, T. Lieuwen and V. Yang Eds.,
AIAA
, Reston, VA, pp.
611
633
.
7.
Bulat
,
G.
,
Skipper
,
D.
,
McMillan
,
R.
, and
Syed
,
K.
,
2007
, “
Active Control of Fuel Splits in Gas Turbine DLE Combustion Systems
,”
ASME
Paper No. GT2007-27266.
8.
Davis
,
L.
, and
Black
,
S.
,
2000
, “
Dry Low NOx Combustion Systems for GE Heavy Duty Gas Turbines
,” GE Publication, Report No. GER-3568G.
9.
Li
,
L.
,
Sun
,
X.
,
Lioi
,
C.
, and
Yang
,
V.
,
2017
, “
Effect of Azimuthally Nonuniform Heat Release on Longitudinal Combustion Instabilities
,”
J. Propul. Power
,
33
(
1
), pp.
193
203
.
10.
Cohen
,
J.
,
Hagen
,
G.
,
Banaszuk
,
A.
,
Becz
,
S.
, and
Mehta
,
P.
,
2011
, “
Attenuation of Combustor Pressure Oscillations Using Symmetry Breaking
,”
AIAA
Paper No.
2011
0060
.
11.
Noiray
,
N.
,
Bothien
,
M.
, and
Schuermans
,
B.
,
2011
, “
Investigation of Azimuthal Staging Concepts in Annular Gas Turbines
,”
Combust. Theory Model.
,
15
(
5
), pp.
585
606
.
12.
Noiray
,
N.
, and
Schuermans
,
B.
,
2012
, “
On the Dynamic Nature of Azimuthal Thermoacoustic Modes in Annular Gas Turbine Combustion Chambers
,”
Proc. R. Soc. A
,
469
.
13.
Ghirardo
,
G.
, and
Juniper
,
M.
,
2013
, “
Azimuthal Instabilities in Annular Combustors: Standing and Spinning Modes
,”
Proc. R. Soc. A
,
469
.
14.
Acharya
,
V.
,
Bothien
,
M.
, and
Lieuwen
,
T.
,
2018
, “
Non-Linear Dynamics of Thermoacoustic Eigen-Mode Interactions
,”
Combust. Flame
,
194
, pp.
309
321
.
15.
Li
,
C.
,
Yang
,
D.
,
Li
,
S.
, and
Zhu
,
M.
,
2018
, “
An Analytical Study of the Effect of Flame Response to Simultaneous Axial and Transverse Perturbations on Azimuthal Thermoacoustic Modes in Annular Combustors
,”
Proc. Combust. Inst.
,
37
(4), pp.
5279
5287
.
16.
Dawson
,
J.
, and
Worth
,
N.
,
2014
, “
Flame Dynamics and Unsteady Heat Release Rate of Self-Excited Azimuthal Modes in an Annular Combustor
,”
Combust. Flame
,
161
(
10
), pp.
2565
2578
.
17.
Kunze
,
K.
,
Hirsch
,
C.
, and
Sattelmayer
,
T.
,
2004
, “
Transfer Function Measurements on a Swirl Stabilized Premix Burner in an Annular Combustion Chamber
,”
ASME
Paper No. GT2004-53106.
18.
Aguilar
,
M.
,
Malanoski
,
M.
,
Adhitya
,
G.
,
Emerson
,
B.
,
Acharya
,
V.
,
Noble
,
D.
, and
Lieuwen
,
T.
,
2015
, “
Helical Flow Disturbances in a Multinozzle Combustor
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091507
.
19.
Worth
,
N.
,
Dawson
,
J.
,
Sidey
,
J.
, and
Mastorakos
,
E.
,
2017
, “
Azimuthally Forced Flames in an Annular Combustor
,”
Proc. Combust. Inst.
,
36
(
3
), pp.
3783
3790
.
20.
Kwong
,
W.
, and
Steinberg
,
A.
,
2019
, “
Blow-off and Reattachment Dynamics of a Linear Multinozzle Combustor
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011015
.
21.
Samarasinghe
,
J.
,
Culler
,
W.
,
Quay
,
B.
,
Santavicca
,
D.
, and
O'Connor
,
J.
,
2017
, “
The Effect of Fuel Staging on the Structure and Instability Characteristics of Swirl-Stabilized Flames in a Lean Premixed Multinozzle Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
12
), p.
121504
.
22.
Culler
,
W.
,
Chen
,
X.
,
Peluso
,
S.
,
Santavicca
,
D.
, and
O'Connor
,
J.
,
2017
, “
The Effect of Transient Fuel Staging on Self-Excited Instabilities in a Multi-Nozzle Model Gas Turbine Combustor
,”
ASME
Paper No. GT2017-63479.
23.
Culler
,
W.
,
Samarasinghe
,
J.
,
Quay
,
B.
,
Santavicca
,
D.
,
O'Connor
,
J.
, and
Noble
,
D.
,
2018
, “
Comparison of Center Nozzle Staging to Outer Nozzle Staging in a Multi-Flame Combustor
,”
ASME
Paper No. GT2018-75423.
24.
Lee
,
J.
, and
Santavicca
,
D.
,
2003
, “
Experimental Diagnostics for the Study of Combustion Instabilities in Lean Premixed Combustors
,”
J. Propul. Power
,
19
(
5
), pp.
735
750
.
25.
Orawannukul
,
P.
,
2014
, “
An Experimental Study of Forced Flame Response in Technically Premixed Flames in a Lean Premixed Gas Turbine Combustor
,” Ph.D. thesis, The Pennsylvania State University, State College, PA.
26.
Gonzalez
,
R.
, and
Woods
,
R.
,
2007
,
Digital Image Processing
,
Prentice Hall
, Upper Saddle River, NJ.
27.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.
28.
Shanbhogue
,
S.
,
Shin
,
D.-H.
,
Hemchandra
,
S.
,
Plaks
,
D.
, and
Lieuwen
,
T.
,
2009
, “
Flame-Sheet Dynamics of Bluff-Body Stabilized Flames During Longitudinal Acoustic Forcing
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1787
1794
.
29.
Samarasinghe
,
J.
,
Peluso
,
S.
,
Szedlmayer
,
M.
,
De Rosa
,
A.
,
Quay
,
B.
, and
Santavicca
,
D.
,
2013
, “
Three-Dimensional Chemiluminescence Imaging of Unforced and Forced Swirl-Stabilized Flames in a Lean Premixed Multi-Nozzle Can Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
101503
.
30.
Shin
,
D.-H.
,
Plaks
,
D.
, and
Lieuwen
,
T.
,
2011
, “
Dynamics of a Longitudinally Forced, Bluff Body Stabilized Flame
,”
J. Propul. Power
,
27
(
1
), pp.
105
116
.
31.
Emerson
,
B.
,
Mondragon
,
U.
,
Acharya
,
V.
,
Shin
,
D.-H.
,
Brown
,
C.
,
McDonell
,
V.
, and
Lieuwen
,
T.
,
2013
, “
Velocity and Flame Wrinkling Characteristics of a Transversely Forced, Bluff-Body Stabilized Flame, Part I: Experiments and Data Analysis
,”
Combust. Sci. Technol.
,
185
(
7
), pp.
1056
1076
.
32.
Acharya
,
V.
,
Emerson
,
B.
,
Mondragon
,
U.
,
Shin
,
D.-H.
,
Brown
,
C.
,
McDonell
,
V.
, and
Lieuwen
,
T.
,
2013
, “
Velocity and Flame Wrinkling Characteristics of a Transversely Forced, Bluff-Body Stabilized Flame—Part II: Flame Response Modeling and Comparison With Measurements
,”
Combust. Sci. Technol.
,
185
(
7
), pp.
1077
1097
.
33.
Preetham
,
H.
,
Santosh
., and
Lieuwen
,
T.
,
2008
, “
Dynamics of Laminar Premixed Flames Forced by Harmonic Velocity Disturbances
,”
J. Propul. Power
,
24
(
9
), pp.
1390
1402
.
34.
McGill
,
R.
,
Tukey
,
J.
, and
Larsen
,
W.
,
1978
, “
Variations of Box Plots
,”
Am. Stat.
,
32
(1), p. 12–16.https://www.tandfonline.com/doi/abs/10.1080/00031305.1978.10479236
You do not currently have access to this content.