The adiabatic, unstrained, laminar flame speed, SL, is a fundamental combustion property, and a premier target for the development and validation of thermochemical mechanisms. It is one of the leading parameters determining the turbulent flame speed, the flame position in burners and combustors, and the occurrence of transient phenomena, such as flashback and blowout. At pressures relevant to gas turbine engines, SL is generally extracted from the continuous expansion of a spherical reaction front in a combustion bomb. However, independent measurements obtained in different types of apparatuses are required to fully constrain thermochemical mechanisms. Here, a jet-wall, stagnation burner designed for operation at gas turbine relevant conditions is presented, and used to assess the reactivity of premixed, lean-to-rich, methane–air flames at pressures up to 16 atm. One-dimensional (1D) profiles of axial velocity are obtained on the centerline axis of the burner using particle tracking velocimetry, and compared to quasi-1D flame simulations performed with a selection of thermochemical mechanisms available in the literature. Significant discrepancies are observed between the numerical and experimental data, and among the predictions of the mechanisms. This motivates further chemical modeling efforts, and implies that designers in industry must carefully select the mechanisms employed for the development of gas turbine combustors.

References

References
1.
Kuo
,
K. K.
,
2005
,
Principles of Combustion
,
2nd ed.
,
Wiley
, Hoboken, NJ.
2.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
, Cambridge, UK.
3.
Lewis
,
B.
, and
von Elbe
,
G.
,
1961
,
Combustion, Flames and Explosions of Gases
,
2nd ed.
,
Academic Press
, Cambridge, MA.
4.
Wohl
,
K.
,
1953
, “
Quenching, Flash-Back, Blow-Off—Theory and Experiment
,”
Proc. Combust. Inst.
,
4
(
1
), pp.
68
89
.
5.
Lieuwen
,
T.
,
McDonell
,
V.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2008
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011506
.
6.
Konle
,
M.
, and
Sattelmayer
,
T.
,
2010
, “
Time Scale Model for the Prediction of the Onset of Flame Flashback Driven by Combustion Induced Vortex Breakdown
,”
ASME J. Eng. Gas Turbines Power
,
132
(
4
), p.
041503
.
7.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
, Cambridge, UK.
8.
Watson
,
G. M. G.
,
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2016
, “
NO Formation in Premixed Flames of C1-C3 Alkanes and Alcohols
,”
Combust. Flame
,
169
, pp.
242
260
.
9.
Watson
,
G. M. G.
,
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2017
, “
NO Formation in Rich Premixed Flames of C1-C4 Alkanes and Alcohols
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
627
635
.
10.
Versailles
,
P.
,
Watson
,
G. M. G.
,
Lipardi
,
A. C. A.
, and
Bergthorson
,
J. M.
,
2016
, “
Quantitative CH Measurements in Atmospheric-Pressure, Premixed Flames of C1-C4 Alkanes
,”
Combust. Flame
,
165
, pp.
109
124
.
11.
Andrews
,
G. E.
, and
Bradley
,
D.
,
1972
, “
Determination of Burning Velocities: A Critical Review
,”
Combust. Flame
,
18
(
1
), pp.
133
153
.
12.
Egolfopoulos
,
F. N.
,
Hansen
,
N.
,
Ju
,
Y.
,
Kohse-Höinghaus
,
K.
,
Law
,
C. K.
, and
Qi
,
F.
,
2014
, “
Advances and Challenges in Laminar Flame Experiments and Implications for Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
43
, pp.
36
67
.
13.
Law
,
C. K.
,
2012
, “
Fuel Options for Next-Generation Chemical Propulsion
,”
AIAA J.
,
50
(
1
), pp.
19
36
.
14.
Wu
,
C. K.
, and
Law
,
C. K.
,
1985
, “
On the Determination of Laminar Flame Speeds From Stretched Flames
,”
Proc. Combust. Inst.
,
20
(
1
), pp.
1941
1949
.
15.
Benezech
,
L.
,
Bergthorson
,
J. M.
, and
Dimotakis
,
P.
,
2009
, “
Premixed Laminar C3H8- and C3H6-Air Stagnation Flames: Experiments and Simulations With Detailed Kinetic Models
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1301
1309
.
16.
Bergthorson
,
J. M.
,
Salusbury
,
S. D.
, and
Dimotakis
,
P. E.
,
2011
, “
Experiments and Modelling of Premixed Laminar Stagnation Flame Hydrodynamics
,”
J. Fluid Mech.
,
681
, pp.
1
30
.
17.
de Goey
,
L. P. H.
,
van Maaren
,
A.
, and
Quax
,
R. M.
,
1993
, “
Stabilization of Adiabatic Premixed Laminar Flames on a Flat Flame Burner
,”
Combust. Sci. Technol.
,
92
(
1–3
), pp.
201
207
.
18.
Bosschaart
,
K. J.
, and
de Goey
,
L. P. H.
,
2004
, “
The Laminar Burning Velocity of Flames Propagating in Mixtures of Hydrocarbons and Air Measured With the Heat Flux Method
,”
Combust. Flame
,
136
(
3
), pp.
261
269
.
19.
Price
,
T. W.
, and
Potter
,
J. H.
,
1953
, “
Factors Affecting Flame Velocity in Stoichiometric Carbon Monoxide Oxygen Mixtures
,”
Proc. Combust. Inst.
,
4
(
1
), pp.
363
369
.
20.
Bauwens
,
C. R.
,
Bergthorson
,
J. M.
, and
Dorofeev
,
S. B.
,
2015
, “
Experimental Study of Spherical-Flame Acceleration Mechanisms in Large-Scale Propane-Air Flames
,”
Proc. Combust. Inst
,
35
(
2
), pp.
2059
2066
.
21.
Gu
,
X. J.
,
Haq
,
M. Z.
,
Lawes
,
M.
, and
Woolley
,
R.
,
2000
, “
Laminar Burning Velocity and Markstein Lengths of Methane-Air Mixtures
,”
Combust. Flame
,
121
(
1–2
), pp.
41
58
.
22.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
A.
,
Cuoci
,
A.
,
Faravelli
,
A.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.
23.
Bergthorson
,
J. M.
, and
Thomson
,
M. J.
,
2015
, “
A Review of the Combustion and Emissions Properties of Advanced Transportation Biofuels and Their Impact on Existing and Future Engines
,”
Renewable Sustainable Energy Rev.
,
42
, pp.
1393
1417
.
24.
Veloo
,
P. S.
,
Wang
,
Y. L.
,
Egolfopoulos
,
F. N.
, and
Westbrook
,
C. K.
,
2010
, “
A Comparative Experimental and Computational Study of Methanol, Ethanol, and n-Butanol Flames
,”
Combust. Flame
,
157
(
10
), pp.
1989
2004
.
25.
Veloo
,
P. S.
, and
Egolfopoulos
,
F. N.
,
2011
, “
Studies of n-Propanol, Iso-Propanol, and Propane Flames
,”
Combust. Flame
,
158
(
3
), pp.
501
510
.
26.
Kochar
,
Y.
,
Seitzman
,
J.
,
Lieuwen
,
T.
,
Metcalfe
,
W.
,
Burke
,
S.
,
Curran
,
H.
,
Krejci
,
M.
,
Lowry
,
W.
,
Petersen
,
E.
, and
Bourque
,
G.
,
2011
, “
Laminar Flame Speed Measurements and Modeling of Alkane Blends at Elevated Pressures With Various Diluents
,”
ASME
Paper No. GT2011-45122.
27.
Santner
,
J.
,
Dryer
,
F. L.
, and
Ju
,
Y.
,
2013
, “
The Effects of Water Dilution on Hydrogen, Syngas, and Ethylene Flames at Elevated Pressure
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
719
726
.
28.
Sun
,
H.
,
Yang
,
S. I.
,
Jomaas
,
G.
, and
Law
,
C. K.
,
2007
, “
High-Pressure Laminar Flame Speeds and Kinetic Modeling of Carbon Monoxide/Hydrogen Combustion
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
439
446
.
29.
Tse
,
S. D.
,
Zhu
,
D. L.
, and
Law
,
C. K.
,
2000
, “
Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures Up to 60 Atmospheres
,”
Proc. Combust. Inst.
,
28
(
2
), pp.
1793
1800
.
30.
Lowry
,
W.
,
de Vries
,
J.
,
Krejci
,
M.
,
Petersen
,
E. L.
,
Serinyel
,
Z.
,
Metcalfe
,
W.
,
Curran
,
H.
, and
Bourque
,
G.
,
2011
, “
Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
91501
.
31.
Frenklach
,
M.
,
Wang
,
H.
, and
Rabinowitz
,
M. J.
,
1992
, “
Optimization and Analysis of Large Chemical Kinetic Mechanisms Using the Solution Mapping Method-Combustion of Methane
,”
Prog. Energy Combust. Sci.
,
18
(
1
), pp.
47
73
.
32.
Frenklach
,
M.
,
2007
, “
Transforming Data Into Knowledge—Process Informatics for Combustion Chemistry
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
125
140
.
33.
Qin
,
X.
,
Kobayashi
,
H.
, and
Niioka
,
T.
,
2000
, “
Laminar Burning Velocity of Hydrogen-Air Premixed Flames at Elevated Pressure
,”
Exp. Therm. Fluid Sci.
,
21
(
1–3
), pp.
58
63
.
34.
Natarajan
,
J.
,
Kochar
,
Y.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2009
, “
Pressure and Preheat Dependence of Laminar Flame Speeds of H2/CO/CO2/O2/He Mixtures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1261
1268
.
35.
Natarajan
,
J.
,
Lieuwen
,
T.
, and
Seitzman
,
J.
,
2007
, “
Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure
,”
Combust. Flame
,
151
(
1–2
), pp.
104
119
.
36.
Egolfopoulos
,
F. N.
,
Cho
,
P.
, and
Law
,
C. K.
,
1989
, “
Laminar Flame Speeds of Methane-Air Mixtures Under Reduced and Elevated Pressures
,”
Combust. Flame
,
76
(
3–4
), pp.
375
391
.
37.
Zhu
,
D. L.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1989
, “
Experimental and Numerical Determination of Laminar Flame Speeds of Methane/(Ar, N2, CO2)-Air Mixtures as Function of Stoichiometry, Pressure, and Flame Temperature
,”
Proc. Combust. Inst.
,
22
(
1
), pp.
1537
1545
.
38.
Bergthorson
,
J. M.
,
2005
, “
Experiments and Modeling of Impinging Jets and Premixed Hydrocarbon Flames
,” Ph.D. thesis, California Institute of Technology, Pasadena, CA.
39.
Egolfopoulos
,
F. N.
,
Zhang
,
H.
, and
Zhang
,
Z.
,
1997
, “
Wall Effects on the Propagation and Extinction of Steady, Strained, Laminar Premixed Flames
,”
Combust. Flame
,
109
(
1–2
), pp.
237
252
.
40.
Versailles
,
P.
, and
Bergthorson
,
J. M.
,
2012
, “
Optimized Laminar Axisymmetrical Nozzle Design Using a Numerically-Validated Thwaites Method
,”
ASME J. Fluids Eng.
,
134
(
10
), p. 101203.
41.
ASME
,
1998
, “
ASME Boiler and Pressure Vessel Code
,” American Society of Mechanical Engineers, Boiler and Pressure Vessel Committee, New York.
42.
Brookhaven National Laboratory
,
2008
, “
Guide for Glass and Plastic Window Design for Pressure Vessels
,” Brookhaven National Laboratory Upton, NY.
43.
Benezech
,
L.
,
2008
, “
Premixed Hydrocarbon Stagnation Flames: Experiments and Simulations to Validate Combustion Chemical-Kinetic Models
,” Engineer's thesis, California Institute of Technology, Pasadena, CA.
44.
Versailles
,
P.
,
2017
, “
CH Formation in Premixed Flames of C1–C4 Alkanes: Assessment of Current Chemical Modelling Capability Against Experiments
,” Ph.D. thesis, McGill University, Montreal, QC, Canada.
45.
Connelly
,
B. C.
,
Bennett
,
B. A. V.
,
Smooke
,
M. D.
, and
Long
,
M. B.
,
2009
, “
A Paradigm Shift in the Interaction of Experiments and Computations in Combustion Research
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
879
886
.
46.
Kee
,
R. J.
,
Miller
,
J. A.
,
Evans
,
G. H.
, and
Dixon-Lewis
,
G.
,
1989
, “
A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane-Air Flames
,”
Proc. Combust. Inst.
,
22
(2), pp.
1479
1494
.
47.
Bergthorson
,
J. M.
, and
Dimotakis
,
P. E.
,
2007
, “
Premixed Laminar C1–C2 Stagnation Flames: Experiments and Simulations With Detailed Thermochemistry Models
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1139
1147
.
48.
Bergthorson
,
J. M.
, and
Dimotakis
,
P. E.
,
2006
, “
Particle Velocimetry in High-Gradient/High-Curvature Flows
,”
Exp. Fluids
,
41
(
2
), pp.
255
263
.
49.
Watson
,
G. M. G.
,
Munzar
,
J. D.
, and
Bergthorson
,
J. M.
,
2013
, “
Diagnostics and Modeling of Stagnation Flames for the Validation of Thermochemical Combustion Models for NOx Predictions
,”
Energy Fuels
,
27
(
11
), pp.
7031
7043
.
50.
Sung
,
C. J.
,
Law
,
C. K.
, and
Axelbaum
,
R. L.
,
1994
, “
Thermophoretic Effects on Seeding Particles in LDV Measurements of Flames
,”
Combust. Sci. Technol.
,
99
(
1–3
), pp.
119
132
.
51.
Sung
,
C. J.
,
Kistler
,
J. S.
,
Nishioka
,
M.
, and
Law
,
C. K.
,
1996
, “
Further Studies on Effects of Thermophoresis on Seeding Particles in LDV Measurements of Strained Flames
,”
Combust. Flame
,
105
(
1–2
), pp.
189
201
.
52.
University of California at San Diego,
2016
, “
Chemical-Kinetic Mechanisms for Combustion Applications
,” Mechanical and Aerospace Engineering (Combustion Research), UC San Diego, La Jolla, CA, http://combustion.ucsd.edu
53.
Gokulakrishnan
,
P.
,
Fuller
,
C. C.
,
Klassen
,
M. S.
,
Joklik
,
R. G.
,
Kochar
,
Y. N.
,
Vaden
,
S. N.
,
Lieuwen
,
T. C.
, and
Seitzman
,
J. M.
,
2014
, “
Experiments and Modeling of Propane Combustion With Vitiation
,”
Combust. Flame
,
161
(
8
), pp.
2038
2053
.
54.
Vagelopoulos
,
C. M.
, and
Egolfopoulos
,
F. N.
,
1998
, “
Direct Experimental Determination of Laminar Flame Speeds
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
513
519
.
55.
Zhao
,
Z.
,
Kazakov
,
A.
,
Li
,
J.
, and
Dryer
,
F. L.
,
2004
, “
The Initial Temperature and N2 Dilution Effect on the Laminar Flame Speed of Propane/Air
,”
Combust. Sci. Technol.
,
176
(
10
), pp.
1705
1723
.
56.
Zhou
,
C. W.
,
Li
,
Y.
,
O'Connor
,
E.
,
Somers
,
K. P.
,
Thion
,
S.
,
Keesee
,
C.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
DeVerter
,
T. A.
,
Oehlschlaeger
,
M. A.
,
Kukkadapu
,
G.
,
Sung
,
C. J.
,
Alrefae
,
M.
,
Khaled
,
F.
,
Farooq
,
A.
,
Dirrenberger
,
P.
,
Glaude
,
P. A.
,
Battin-Leclerc
,
F.
,
Santner
,
J.
,
Ju
,
Y.
,
Held
,
T.
,
Haas
,
F. M.
,
Dryer
,
F. L.
, and
Curran
,
H. J.
,
2016
, “
A Comprehensive Experimental and Modeling Study of Isobutene Oxidation
,”
Combust. Flame
,
167
, pp.
353
379
.
57.
Zhang
,
Y.
,
Mathieu
,
O.
,
Petersen
,
E. L.
,
Bourque
,
G.
, and
Curran
,
H. J.
,
2017
, “
Assessing the Predictions of a NOx Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data
,”
Combust. Flame
,
182
, pp.
122
141
.
58.
El Bakali
,
A.
,
Pillier
,
L.
,
Desgroux
,
P.
,
Lefort
,
B.
,
Gasnot
,
L.
,
Pauwels
,
J. F.
, and
da Costa
,
I.
,
2006
, “
NO Prediction in Natural Gas Flames Using GDF–Kin3.0 Mechanism NCN and HCN Contribution to Prompt-NO Formation
,”
Fuel
,
85
(
7–8
), pp.
896
909
.
59.
El Bakali
,
A.
,
Dagaut
,
P.
,
Pillier
,
L.
,
Desgroux
,
P.
,
Pauwels
,
J. F.
,
Rida
,
A.
, and
Meunier
,
P.
,
2004
, “
Experimental and Modeling Study of the Oxidation of Natural Gas in a Premixed Flame, Shock Tube, and Jet-Stirred Reactor
,”
Combust. Flame
,
137
(
1–2
), pp.
109
128
.
60.
Konnov
,
A. A.
,
2009
, “
Implementation of the NCN Pathway of Prompt-NO Formation in the Detailed Reaction Mechanism
,”
Combust. Flame
,
156
(
11
), pp.
2093
2105
.
You do not currently have access to this content.