The stiffness of large chemistry mechanisms has been proved to be a major hurdle toward predictive engine simulations. As a result, detailed chemistry mechanisms with a few thousand species need to be reduced based on target conditions so that they can be accommodated within the available computational resources. The computational cost of simulations typically increases super-linearly with the number of species and reactions. This work aims to bring detailed chemistry mechanisms within the realm of engine simulations by coupling the framework of unsteady flamelets and fast chemistry solvers. A previously developed tabulated flamelet model (TFM) framework for nonpremixed combustion was used in this study. The flamelet solver consists of the traditional operator-splitting scheme with variable coefficient ordinary differential equation (ODE) solver (VODE) and a numerical Jacobian for solving the chemistry. In order to use detailed mechanisms with thousands of species, a new framework with the Livermore solver for ODEs in sparse form (LSODES) chemistry solver and an analytical Jacobian was implemented in this work. Results from 1D simulations show that with the new framework, the computational cost is linearly proportional to the number of species in a given chemistry mechanism. As a result, the new framework is 2–3 orders of magnitude faster than the conventional variable coefficient ODE (VODE) solver for large chemistry mechanisms. This new framework was used to generate unsteady flamelet libraries for n-dodecane using a detailed chemistry mechanism with 2755 species and 11,173 reactions. The engine combustion network (ECN) spray A experiments, which consist of an igniting n-dodecane spray in turbulent, high-pressure engine conditions are simulated using large eddy simulations (LES) coupled with detailed mechanisms. A grid with 0.06 mm minimum cell size and 22 ×106 peak cell count was implemented. The framework is validated across a range of ambient temperatures against ignition delay and liftoff lengths (LOLs). Qualitative results from the simulations were compared against experimental OH and CH2O planar laser-induced fluorescence (PLIF) data. The models are able to capture the spatial and temporal trends in species compared to those observed in the experiments. Quantitative and qualitative comparisons between the predictions of the reduced and detailed mechanisms are presented in detail. The main goal of this study is to demonstrate that detailed reaction mechanisms (∼1000 species) can now be used in engine simulations with a linear increase in computation cost with number of species during the tabulation process and a small increase in the 3D simulation cost.

References

References
1.
McNenly
,
M. J.
,
Whitesides
,
R. A.
, and
Flowers
,
D. L.
,
2015
, “
Faster Solvers for Large Kinetic Mechanisms Using Adaptive Preconditioners
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
581
587
.
2.
Xu
,
C.
,
Gao
,
Y.
,
Ren
,
Z.
, and
Lu
,
T.
,
2016
, “
A Sparse Stiff Chemistry Solver Based on Dynamic Adaptive Integration for Efficient Combustion Simulations
,”
Combust. Flame
,
172
, pp.
183
193
.
3.
Green
,
W. H.
,
2007
, “
Predictive Kinetics: A New Approach for the 21st Century
,”
Adv. Chem. Eng.
,
32
, pp.
1
313
.
4.
Curran
,
H. J.
,
Gaffuri
,
P.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
1998
, “
A Comprehensive Modeling Study of n-Heptane Oxidation
,”
Combust. Flame
,
114
(
1–2
), pp.
149
177
.
5.
Herbinet
,
O.
,
Pitz
,
W. J.
, and
Westbrook
,
C. K.
,
2008
, “
Detailed Chemical Kinetic Oxidation Mechanism for a Biodiesel Surrogate
,”
Combust. Flame
,
154
(
3
), pp.
507
528
.
6.
Pei
,
Y.
,
Mehl
,
M.
,
Liu
,
W.
,
Lu
,
T.
,
Pitz
,
W. J.
, and
Som
,
S.
,
2015
, “
A Multicomponent Blend as a Diesel Fuel Surrogate for Compression Ignition Engine Applications
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111502
.
7.
Sarathy
,
S. M.
,
Westbrook
,
C. K.
,
Mehl
,
M.
,
Pitz
,
W. J.
,
Togbe
,
C.
,
Dagaut
,
P.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Niemann
,
U.
, and
Seshadri
,
K.
,
2011
, “
Comprehensive Chemical Kinetic Modeling of the Oxidation of 2-Methylalkanes From C 7 to C 20
,”
Combust. Flame
,
158
(
12
), pp.
2338
2357
.
8.
Brown
,
P. N.
,
Byrne
,
G. D.
, and
Hindmarsh
,
A. C.
,
1989
, “
VODE: A Variable-Coefficient ODE Solver
,”
SIAM J. Sci. Stat. Comput.
,
10
(
5
), pp.
1038
1051
.
9.
Perini
,
F.
,
Galligani
,
E.
, and
Reitz
,
R. D.
,
2014
, “
A Study of Direct and Krylov Iterative Sparse Solver Techniques to Approach Linear Scaling of the Integration of Chemical Kinetics With Detailed Combustion Mechanisms
,”
Combust. Flame
,
161
(
5
), pp.
1180
1195
.
10.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.
11.
Pitsch
,
H.
,
Barths
,
H.
, and
Peters
,
N.
,
1996
, “
Three-Dimensional Modeling of NOx and Soot Formation in DI-Diesel Engines Using Detailed Chemistry Based on the Interactive Flamelet Approach
,”
SAE Paper No. 962057
.
12.
Kong
,
S.-C.
,
Kim
,
H.
,
Reitz
,
R. D.
, and
Kim
,
Y.
,
2006
, “
Comparisons of Diesel PCCI Combustion Simulations Using a Representative Interactive Flamelet Model and Direct Integration of CFD With Detailed Chemistry
,”
ASME J. Eng. Gas Turbines Power
,
129
(
1
), pp.
252
260
.
13.
D'Errico
,
G.
,
Lucchini
,
T.
,
Hardy
,
G.
,
Tap
,
F.
, and
Ramaekers
,
G.
,
2015
, “
Combustion Modeling in Heavy Duty Diesel Engines Using Detailed Chemistry and Turbulence-Chemistry Interaction
,”
SAE Paper No. 2015-01-0375
.
14.
Pope
,
S. B.
,
2013
, “
Small Scales, Many Species and the Manifold Challenges of Turbulent Combustion
,”
Proc. Combust. Inst.
34
, pp.
1
31
.
15.
Van Oijen
,
J.
,
Lammers
,
F.
, and
De Goey
,
L.
,
2001
, “
Modeling of Complex Premixed Burner Systems by Using Flamelet-Generated Manifolds
,”
Combust. Flame
,
127
(
3
), pp.
2124
2134
.
16.
Ihme
,
M.
,
Cha
,
C. M.
, and
Pitsch
,
H.
,
2005
, “
Prediction of Local Extinction and Re-Ignition Effects in Non-Premixed Turbulent Combustion Using a Flamelet/Progress Variable Approach
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
793
800
.
17.
Fiorina
,
B.
,
Baron
,
R.
,
Gicquel
,
O.
,
Thevenin
,
D.
,
Carpentier
,
S.
, and
Darabiha
,
N.
,
2003
, “
Modelling Non-Adiabatic Partially Premixed Flames Using Flame-Prolongation of ILDM
,”
Combust. Theory Modell.
,
7
(
3
), pp.
449
470
.
18.
Ameen
,
M. M.
,
Kundu
,
P.
, and
Som
,
S.
,
2016
, “
Novel Tabulated Combustion Model Approach for Lifted Spray Flames With Large Eddy Simulations
,”
SAE Int. J. Engines
,
9
(
4
), pp.
2056
2065
.
19.
Kundu
,
P.
,
Ameen
,
M.
,
Unnikrishnan
,
U.
, and
Som
,
S.
,
2017
, “
Implementation of a Tabulated Flamelet Model for Compression Ignition Engine Applications
,”
SAE Paper No. 2017-01-0564
.
20.
Kundu
,
P.
,
Echekki
,
T.
,
Pei
,
Y.
, and
Som
,
S.
,
2017
, “
An Equivalent Dissipation Rate Model for Capturing History Effects in Non-Premixed Flames
,”
Combust. Flame
,
176
, pp.
202
212
.
21.
Kundu
,
P.
,
Ameen
,
M. M.
, and
Som
,
S.
,
2017
, “
Importance of Turbulence-Chemistry Interactions at Low Temperature Engine Conditions
,”
Combust. Flame
,
183
, pp.
283
298
.
22.
Lu
,
L.
, and
Pope
,
S. B.
,
2009
, “
An Improved Algorithm for In Situ Adaptive Tabulation
,”
J. Comput. Phys.
,
228
(
2
), pp.
361
386
.
23.
Tap
,
F.
, and
Schapotschnikow
,
P.
,
2012
, “
Efficient Combustion Modeling Based on Tabkin® CFD Look-Up Tables: A Case Study of a Lifted Diesel Spray Flame
,”
SAE Paper No. 2012-01-0152
.
24.
Colin
,
O.
,
da Cruz
,
A. P.
, and
Jay
,
S.
,
2005
, “
Detailed Chemistry-Based Auto-Ignition Model Including Low Temperature Phenomena Applied to 3D Engine Calculations
,”
Proc. Combust. Inst.
,
30
(
2
), pp.
2649
2656
.
25.
Hindmarsh, A. C.
, 1980, “
LSODE and LSODI, Two New Initial Value Ordinary Differential Equation Solvers
,” ACM Signum Newsletter,
15
(4), pp. 10–11.
26.
Peters
,
N.
,
1984
, “
Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
3
), pp.
319
339
.
27.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinetics
,
36
(
10
), pp.
566
575
.
28.
Luo
,
Z.
,
Yoo
,
C. S.
,
Richardson
,
E. S.
,
Chen
,
J. H.
,
Law
,
C. K.
, and
Lu
,
T.
,
2012
, “
Chemical Explosive Mode Analysis for a Turbulent Lifted Ethylene Jet Flame in Highly-Heated Coflow
,”
Combust. Flame
,
159
(
1
), pp.
265
274
.
29.
Davis, S. G.
,
Joshi, A. V.
,
Wang, H.
, and
Egolfopoulos, F.
, 2005, “
An Optimized Kinetic Model of H2/CO Combustion
,”
Proc. Combust. Inst.
,
30
(1), pp. 1283–1292.
30.
Lu
,
T.
, and
Law
,
C. K.
,
2006
, “
Linear Time Reduction of Large Kinetic Mechanisms With Directed Relation Graph: N-Heptane and Iso-Octane
,”
Combust. Flame
,
144
(
1–2
), pp.
24
36
.
31.
Mehl
,
M.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
, and
Curran
,
H. J.
,
2011
, “
Kinetic Modeling of Gasoline Surrogate Components and Mixtures Under Engine Conditions
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
193
200
.
32.
Mehl
,
M.
,
Curran
,
H.
,
Pitz
,
W.
, and
Westbrook
,
C.
,
2009
, “
Chemical Kinetic Modeling of Component Mixtures Relevant to Gasoline
,”
Fourth European Combustion Meeting
, Vienna, Austria, Apr. 14–17.
33.
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Herbinet
,
O.
,
Curran
,
H. J.
, and
Silke
,
E. J.
,
2009
, “
A Comprehensive Detailed Chemical Kinetic Reaction Mechanism for Combustion of n-Alkane Hydrocarbons From n-Octane to n-Hexadecane
,”
Combust. Flame
,
156
(
1
), pp.
181
199
.
34.
CONVERGE
,
2013
,
Software (Version 2.1. 0)
,
Convergent Science
,
Middleton, WI
.
35.
Barths
,
H.
,
Hasse
,
C.
,
Bikas
,
G.
, and
Peters
,
N.
,
2000
, “
Simulation of Combustion in Direct Injection Diesel Engines Using a Eulerian Particle Flamelet Model
,”
Proc. Combust. Inst.
,
28
(
1
), pp.
1161
1168
.
36.
Xue
,
Q.
,
Som
,
S.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2013
, “
Large Eddy Simulation of Fuel-Spray Under Non-Reacting IC Engine Conditions
,”
Atomization Sprays
,
23
(
10
), pp. 925–955.
37.
Kundu
,
P.
,
Pei
,
Y.
,
Wang
,
M.
,
Mandhapati
,
R.
, and
Som
,
S.
,
2014
, “
Evaluation of Turbulence-Chemistry Interaction Under Diesel Engine Conditions With Multi-Flamelet RIF Model
,”
Atomization Sprays
,
24
(
9
), pp. 779–800.
38.
Luo
,
Z.
,
Som
,
S.
,
Sarathy
,
S. M.
,
Plomer
,
M.
,
Pitz
,
W. J.
,
Longman
,
D. E.
, and
Lu
,
T.
,
2014
, “
Development and Validation of an n-Dodecane Skeletal Mechanism for Spray Combustion Applications
,”
Combust. Theory Modell.
,
18
(
2
), pp.
187
203
.
39.
Ameen
,
M. M.
,
Pei
,
Y.
, and
Som
,
S.
,
2016
, “
Computing Statistical Averages From Large Eddy Simulation of Spray Flames
,”
SAE Paper No. 2016-01-0585
.
40.
Pei
,
Y.
,
Hu
,
B.
, and
Som
,
S.
,
2016
, “
Large-Eddy Simulation of an n-Dodecane Spray Flame Under Different Ambient Oxygen Conditions
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032205
.
41.
Pei
,
Y.
,
Som
,
S.
,
Kundu
,
P.
, and
Goldin
,
G. M.
,
2015
, “
Large Eddy Simulation of a Reacting Spray Flame Under Diesel Engine Conditions
,”
SAE Paper No. 2015-01-1844
.
42.
Pei
,
Y.
,
Som
,
S.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Skeen
,
S. A.
,
Manin
,
J.
, and
Pickett
,
L. M.
,
2015
, “
Large Eddy Simulation of a Reacting Spray Flame With Multiple Realizations Under Compression Ignition Engine Conditions
,”
Combust. Flame
,
162
(
12
), pp.
4442
4455
.
43.
Van Dam
,
N.
,
Som
,
S.
,
Swantek
,
A.
, and
Powell
,
C.
,
2016
, “
The Effect of Grid Resolution on Predicted Spray Variability Using Multiple Large-Eddy Simulations
,”
ASME
Paper No. ICEF2016-9384.
44.
Skeen
,
S. A.
,
Manin
,
J.
, and
Pickett
,
L. M.
,
2015
, “
Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Ignition Visualization in High-Pressure Spray Flames
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3167
3174
.
45.
Maes
,
N.
,
Meijer
,
M.
,
Dam
,
N.
,
Somers
,
B.
,
Toda
,
H. B.
,
Bruneaux
,
G.
,
Skeen
,
S. A.
,
Pickett
,
L. M.
, and
Manin
,
J.
,
2016
, “
Characterization of Spray a Flame Structure for Parametric Variations in ECN Constant-Volume Vessels Using Chemiluminescence and Laser-Induced Fluorescence
,”
Combust. Flame
,
174
, pp.
138
151
.
You do not currently have access to this content.