The purpose of this paper is to present a multidisciplinary predesign process and its application to three aero-engine models. First, a twin spool mixed flow turbofan engine model is created for validation purposes. The second and third engine models investigated comprise future engine concepts: a counter rotating open rotor (CROR) and an ultrahigh bypass turbofan. The turbofan used for validation is based on publicly available reference data from manufacturing and emission certification. At first, the identified interfaces and constraints of the entire predesign process are presented. An important factor of complexity in this highly iterative procedure is the intricate data flow, as well as the extensive amount of data transferred between all involved disciplines and among different fidelity levels applied within the design phases. To cope with the inherent complexity, data modeling techniques have been applied to explicitly determine required data structures of those complex systems. The resulting data model characterizing the components of a gas turbine and their relationships in the design process is presented in detail. Based on the data model, the entire engine predesign process is presented. Starting with the definition of a flight mission scenario and resulting top level engine requirements, thermodynamic engine performance models are developed. By means of these thermodynamic models, a detailed engine component predesign is conducted. The aerodynamic and structural design of the engine components are executed using a stepwise increase in level of detail and are continuously evaluated in context of the overall engine system.

References

References
1.
Moerland
,
E.
,
Pfeiffer
,
T.
,
Böhnke
,
D.
,
Jepsen
,
J.
,
Freund
,
S.
,
Liersch
,
C.-M.
,
Chiozzotto
,
G.-P.
,
Klein
,
C.
,
Scherer
,
J.
, and
Hasan
,
Y.-J.
,
2017
, “
On the Design of a Strut-Braced Wing Configuration in a Collaborative Design Environment
,”
AIAA
Paper No. 2017-4397.
2.
Moerland
,
E.
,
Becker
,
R.-G.
, and
Nagel
,
B.
, 2015, “
Collaborative Understanding of Disciplinary Correlations Using a Low-Fidelity Physics-Based Aerospace Toolkit
,”
CEAS Aeronaut. J.
,
6
(
3
), pp.
441
454
.
3.
German Aerospace Center (DLR),
2017
, “
Systems Architectures in Aeronautics
,” CPACS, Hamburg, Germany, accessed Sept. 1, 2017, https://www.dlr.de/lk/desktopdefault.aspx/tabid-4469/7258_read-39713/
4.
Schaber
,
R.
,
2001
, “
Numerische Auslegung und Simulation von Gasturbinen
,” Ph.D. thesis, Munich, Germany.
5.
Jeschke
,
P.
,
Kurzke
,
J.
,
Schaber
,
R.
, and
Riegler
,
C.
,
2004
, “
Preliminary Gas Turbine Design Using the Multidisciplinary Design System MOPEDS
,”
ASME J. Eng. Gas Turbines Power
,
126
(
2
), pp.
258
264
.
7.
Kupijai
,
P.
,
2014
, “
Ein Beitrag zur automatisierten Triebwerksvorauslegung
,” Ph.D. thesis, Shaker Verlag, Aachen, Germany.
8.
Mattingly
,
J.-D.
,
Heiser
,
W.-H.
, and
Prat
,
D.-T.
,
2002
, “
Aircraft Engine Design
,”
AIAA Education Series
,
2nd ed.
, American Institute of Aeronautics & Astronautics, Reston, VA.
9.
Claus
,
R.-W.
,
Evans
,
A.-L.
,
Lylte
,
J.-K.
, and
Nichols
,
L.-D.
,
1991
, “
Numerical Propulsion System Simulation
,”
Comput. Syst. Eng.
,
2
(
4
), pp.
357
364
.
10.
Rumbaugh, J.
,
Jacobson, I.
, and
Booch, G.
, 1999,
The Unifed Modeling Language Reference Manual
(Addison-Wesley Object Technology Series), Addison-Wesley, Boston, MA.
11.
Reitenbach
,
S.
,
Schnoes
,
M.
,
Becker
,
R.-G.
, and
Otten
,
T.
,
2015
, “
Optimization of Compressor Variable Geometry Settings Using Multi-Fidelity Simulation
,”
ASME
Paper No. GT2015-42832.
12.
Klein
,
C.
,
Reitenbach
,
S.
,
Schoenweitz
,
D.
, and
Wolters
,
F.
,
2017
, “
A Fully Coupled Approach for the Integration of 3D-CFD Component Simulation in Overall Engine Performance Analysis
,”
ASME
Paper No. GT2017-63591.
13.
Voss
,
C.
, and
Nicke
,
E.
, 2008, “
Automatische Optimierung von Verdichterstufen
,” Fachlicher Abschlussbericht Forschungsvorhaben, FKZ: 0327713B, AG Turbo COOREFF-T.
14.
Seider
,
D.
,
Basermann
,
A.
,
Mischke
,
R.
,
Siggel
,
M.
,
Tröltzsch
,
A.
, and
Zur
,
S.
,
2013
, “
Ad hoc Collaborative Design With Focus on Iterative Multidisciplinary Process Chain Development Applied to Thermal Management of Spacecraft
,” Fourth CEAS Air and Space Conference, Linköping, Sweden, Sept. 16–19.
15.
Becker
,
R.-G.
,
Wolters
,
F.
,
Nauroz
,
M.
, and
Otten
,
T.
,
2011
, “
Development of a Gas Turbine Performance Code and Its Application to Preliminary Engine Design
,” Deutscher Luft- und Raumfahrt Kongress (DLRK 2011), Bremen, Deutschland, Sept. 27–29, Paper No.
DLRK2011-241485
https://elib.dlr.de/73232/.
16.
Becker
,
R.-G.
,
Reitenbach
,
S.
,
Klein
,
C.
,
Nauroz
,
M.
, and
Siggel
,
M.
,
2015
, “
An Integrated Method for Propulsion System Conceptual Design
,”
ASME
Paper No. GT2015-43251.
17.
Schmitz
,
A.
,
Aulich
,
M.
,
Schönweitz
,
D.
, and
Nicke
,
E.
,
2012
, “
Novel Performance Prediction of a Transonic 4.5-Stage Compressor
,”
ASME
Paper No. GT2012-69003.
18.
Schnoes
,
M.
, and
Nicke
,
E.
,
2015
, “
Automated Calibration of Compressor Loss and Deviation Correlations
,”
ASME
Paper No. GT2015-42644.
19.
Drela
,
M.
, and
Youngren
,
H.
,
1998
, “
A User's Guide to MISES 2.53
,” MIT Aerospace Computational Design Laboratory, Cambridge, MA.
20.
Tietz
,
S.
, and
Behrendt
,
T.
,
2011
, “
Development and Application of a Pre-Design Tool for Aero Engine Combustors
,”
CEAS Aeronaut. J.
,
2
(
1–4
), pp.
111
123
.
21.
Aumeier
,
T.
, and
Behrendt
,
T.
,
2015
, “
Application of an Aerothermal Model for the Effusion Cooling Systems and Finite Rate Chemistry in Aero-Engine Combustors
,”
Turbulence Heat and Mass Transfer
, Vol.
8
, Begel House Inc., Danbury, CT.
22.
Corman
,
G.
, and
Luthra
,
K.
,
2005
, “
Silicon Melt Infiltrated Ceramic Composites (HiPerComp™)
,”
Handbook of Ceramic Composites
,
Springer
, Boston, MA, pp.
99
115
.
23.
Shi
,
Y.
,
Jain
,
N.
,
Jemmali
,
R.
,
Hofmann
,
S.
,
Koch
,
D.
, and
Hackemann
,
S.
,
2015
, “
Prediction of Elastic Properties for a Wound Oxide Ceramic Matrix Composite Material
,”
Int. J. Appl. Ceram. Technol.
,
12
(S3), pp.
E99
E110
.
24.
Shi
,
Y.
,
2017
, “
Characterization and Modeling of the Mechanical Properties of Wound Oxide Ceramic Composites
,” Karlsruher Institut für Technologie (KIT), Karlsruhe, Germany.
25.
Jain
,
N.
, and
Shi
,
Y.
,
2014
, “
Evaluation and FE-Implementation of Failure Criteria for an Oxide Wound CMC at Sample and Component Level
,”
Master's thesis
, Universität Stuttgart, Stuttgart, Germany.https://elib.dlr.de/94259/
26.
Gerendás
,
M.
,
Cadoret
,
Y.
,
Wilhelmi
,
C.
,
Machry
,
T.
,
Knoche
,
R.
,
Behrendt
,
T.
,
Aumeier
,
T.
,
Denis
,
S.
,
Go¨ring
,
J.-R.
, and
Koch
,
D.
,
2011
, “
Improvement of Oxide/Oxide CMC and Development of Combustor and Turbine Components in the HIPOC Program
,”
ASME
Paper No. GT2011-45460.
27.
Gerendás
,
M.
,
Wilhelmi
,
C.
,
Machry
,
T.
,
Knoche
,
R.
,
Werth
,
E.
,
Behrendt
,
T.
,
Koch
,
D.
,
Hofmann
,
S.
,
Göring
,
J.
, and
Tushtev
,
K.
, 2013, “
Development and Validation of Oxide/Oxide CMC Combustors Within the HiPOC Program
,”
ASME
Paper No. GT2013-94679.
28.
Hönig
,
S.
,
Hofmann
,
S.
, and
Koch
,
D.
,
2015
, “
Structural Analysis of a CMC Liner Within the HIPOC Project
,”
90th DKG Annual Conference and Symposium on High-Performance Ceramics
, Bayreuth, Deutschland, Mar. 15–19.https://elib.dlr.de/99448/
29.
Krumme
,
A.
,
2016
, “
Performance Prediction and Early Design Code for Axial Turbines and Its Application in Research and Predesign
,”
ASME
Paper No. GT2016-56082.
30.
Giles
,
M.-B.
, and
Drela
,
M.
,
1987
, “
Parametric Interturbine Duct Design and Optimisation
,”
AIAA Paper No. 87-0424.
31.
Aulich
,
M.
,
Voss
,
C.
, and
Raitor
,
T.
,
2014
, “
Optimization Strategies Demonstrated on a Transonic Centrifugal Compressor
,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (
ISROMAC
), Honolulu, HI, Feb. 24–28https://elib.dlr.de/96309/.
32.
Voss
,
C.
,
Aulich
,
M.
, and
Raitor
,
T.
,
2014
, “
Metamodel Assisted Aeromechanical Optimization of a Transonic Centrifugal Compressor
,” International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC), Honolulu, HI, Feb. 24–28.
33.
Krumme
,
A.
,
2016
, “
Konzeption, Implementierung und Anwendung eines automatisierten aerothermodynamischen Vorentwurfsprozesses für Axialturbinen
,” Ph.D. thesis, University of Kassel, Kassel, Germany.
34.
Heermann
,
K.-F.
,
McClure
,
K.-R.
, and
Eriksson
,
R.-H.
,
1977
, “
Study to Improve Engine Rotor Blade Containment
,” U.S. Department of Transportation, Federal Aviation Administration, Washington, DC, No. FAA-RD-767-100.
35.
Wörrlein
,
K.
,
1995
, “
Die Berechnung der Spannungen in Dünnen Scheiben infolge von Rotation und Temperaturgradienten
,” Technische Universität Darmstadt, Fachgebiet Gasturbinen und Flugantriebe, Darmstadt, Germany.
36.
ICAO, 1993, “
ICAO Aircraft Engine Emissions Databank
,” Annex 16 to the Convention on International Civil Aviation, Volume II, Aircraft Engine Emissions, 2nd ed., International Civil Aviation Organization, Montreal, QC, Canada, accessed July 16, 2018, http://www.easa.europa.eu/document-library/icao-aircraft-engine-emissions-databank
37.
Schnell
,
R.
,
Ebel
,
P.-B.
, and
Becker
,
R.-G. S. D.
,
2013
, “
Performance Analysis of the Integrated V2527-Engine Fan at Ground Operation
,” 13th Onera DLR Aerospace Symposium (
ODAS
), Palaiseau, France, Mar. 27–29.https://elib.dlr.de/82689/
38.
Sagerser
,
D.
,
Lieblein
,
S.
, and
Krebs
,
R.
,
1971
, “
Empirical Expressions for Estimating Length and Weight of Axial-Flow Components of VTOL Powerplant
,” NASA Lewis Research Center, Cleveland, OH, Report No.
NASA-TM-X-2406
.https://ntrs.nasa.gov/search.jsp?R=19720005136
39.
Jackson
,
A.
,
2009
, “
Optimisation of Aero and Industrial Gas Turbine Design for the Environment
,”
Ph.D. thesis
, Cranfield University, Cranfield, UK.https://dspace.lib.cranfield.ac.uk/handle/1826/4316
40.
Grieb
,
H.
,
2004
,
Projektierung von Turboflugtriebwerken
,
Birkhäuser
, Basel, Switzerland.
41.
Lengyel-Kampmann
,
T.
,
Otten
,
T.
,
Schmidt
,
T.
, and
Nicke
,
E.
,
2015
, “
Optimization of an Engine With a Gear Driven Counter Rotating Fan—Part I: Fan Performance and Design
,” 22nd International Symposium on Air Breathing Engines (ISABE), Phoenix, AZ, Oct. 25–30, Paper No.
ISABE-2015-20091
.https://drc.libraries.uc.edu/handle/2374.UC/745696?value=Compressors%20axial%20and%20centripetal%20turbines:%20Axial%20and%20centrifugal%20compressors&type=subject&ztype=subject&focusscope=2374.UC/659492&mode=browse
42.
Otten
,
T.
,
Lengyel-Kampmann
,
T.
,
Becker
,
R.
, and
Reitenbach
,
S.
,
2015
, “
Optimization of an Engine With a Gear Driven Counter Rotating Fan—Part II: Cycle Selection and Performance
,” 22nd International Symposium on Air Breathing Engines (ISABE), Phoenix, AZ, Oct. 25–30, Paper No.
ISABE-2015-20090
.https://elib.dlr.de/101125/
You do not currently have access to this content.