In the present paper, the synergistic combination of intercooling with pulsed detonation combustion is analyzed concerning its contribution to NOx and CO2 emissions. CO2 is directly proportional to fuel burn and can, therefore, be reduced by improving specific fuel consumption (SFC) and reducing engine weight and nacelle drag. A model predicting NOx generation per unit of fuel for pulsed detonation combustors (PDCs), operating with jet-A fuel, is developed and integrated within Chalmers University's gas turbine simulation tool GESTPAN. The model is constructed using computational fluid dynamics (CFD) data obtained for different combustor inlet pressure, temperature, and equivalence ratio levels. The NOx model supports the quantification of the trade-off between CO2 and NOx emissions in a 2050 geared turbofan architecture incorporating intercooling and pulsed detonation combustion and operating at pressures and temperatures of interest in gas turbine technology for aero-engine civil applications.

References

References
1.
Grönstedt
,
T.
,
Xisto
,
C.
,
Sethi
,
V.
,
Rolt
,
A.
,
Rosa
,
N. G.
,
Seitz
,
A.
,
Yakinthos
,
K.
,
Donnerhack
,
S.
,
Newton
,
P.
,
Tantot
,
N.
,
Schmitz
,
O.
, and
Lundbladh
,
A.
,
2016
, “
Ultra Low Emission Technology Innovations for Mid-Century Aircraft Turbine Engines
,”
ASME
Paper No. GT2016-56123.
2.
Grönstedt
,
T.
,
Irannezhad
,
M.
,
Lei
,
X.
,
Thulin
,
O.
, and
Lundbladh
,
A.
,
2014
, “
First and Second Law Analysis of Future Aircraft Engines
,”
ASME J. Eng. Gas Turbines Power
,
136
(
3
), p.
031202
.
3.
Xisto
,
C.
,
Ali
,
F.
,
Petit
,
O.
,
Grönstedt
,
T.
,
Rolt
,
A.
, and
Lundbladh
,
A.
,
2017
, “
Analytical Model for the Performance Estimation of Pre-Cooled Pulse Detonation Turbofan Engines
,”
ASME
Paper No. GT2017-63776.
4.
Yungster
,
S.
, and
Breisacher
,
K.
,
2005
, “
Study of NOx Formation in Hydrocarbon-Fueled Pulse Detonation Engines
,”
AIAA
Paper No. AIAA 2005-4210.
5.
Yungster
,
S.
,
Radhakrishnan
,
K.
, and
Breisacher
,
K.
,
2006
, “
Computational Study of NOx Formation in Hydrogen-Fuelled Pulse Detonation Engines
,”
Combust. Theory Modell.
,
10
(
6
), pp.
981
1002
.
6.
Djordjevic
,
N.
,
Hanraths
,
N.
,
Gray
,
J.
,
Berndt
,
P.
, and
Moeck
,
J.
,
2017
, “
Numerical Study on the Reduction of NOx Emissions From Pulse Detonation Combustion
,”
ASME
Paper No. GT2017-64485.
7.
ANSYS
,
2016
,
ANSYS Fluent Theory Guide
,
ANSYS
, Canonsburg, PA.
8.
Djordjevic
,
N.
,
Hanraths
,
N.
,
Gray
,
J.
,
Berndt
,
P.
, and
Moeck
,
J.
,
2017
, “
Numerical Study on the Reduction of NOx Emissions From Pulse Detonation Combustion
,”
ASME J. Eng. Gas Turbines Power
,
140
(
4
), p.
041504
.
9.
Grönstedt
,
T.
,
2000
, “
Development of Methods for Analysis and Optimization of Complex Jet Engine Systems
,” Ph.D. thesis, Chalmers University of Technology, Gothenburg, Sweden.
10.
Grönstedt
,
T.
, and
Wallin
,
M.
,
2004
, “
A Comparative Study of Genetic Algorithms and Gradient Methods for RM12 Turbofan Engine Diagnostics and Performance Estimation
,”
ASME
Paper No. GT2004-53591.
11.
Xu
,
L.
, and
Gronstedt
,
T.
,
2010
, “
Design and Analysis of an Intercooled Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
132
(
11
), p.
114503
.
12.
Xu
,
L.
,
Kyprianidis
,
K. G.
, and
Gronstedti
,
T. U. J.
,
2013
, “
Optimization Study of an Intercooled Recuperated Aero-Engine
,”
J. Propul. Power
,
29
(
2
), pp.
424
432
.
13.
Zhao
,
X.
,
Thulin
,
O.
, and
Gronstedt
,
T.
,
2015
, “
First and Second Law Analysis of Intercooled Turbofan Engine
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
021202
.
14.
Thulin
,
O.
,
Petit
,
O.
,
Xisto
,
C.
,
Zhao
,
X.
, and
Gronstedt
,
T.
,
2017
, “
First and Second Law Analysis of Radical Intercooling Concepts
,”
ASME J. Eng. Gas Turbines Power
,
140
(
8
), p.
081201
.
15.
Newton
,
P.
,
Tantot
,
N.
,
Donnerhack
,
S.
, and
Lundbladh
,
A.
,
2015
, “
D1.1—Establish Common Year 2050 Technology Level Assumptions
,” European Union, Brussels, Belgium, Report No. H2020-ULTIMATE.
16.
Greitzer
,
E. M.
,
Bonnefoy
,
P. A.
,
delaRosaBlanco
,
E.
,
Dorbian
,
C. S.
,
Drela
,
M.
,
Hall
,
D. K.
,
Hansman
,
R. J.
,
Hileman
,
J. I.
,
Liebeck
,
R. H.
, and
Lovegren
,
J.
,
2010
, “
N+3 Aircraft Concept Designs and Trade Studies, Volume 2; Appendices-Design Methodologies for Aerodynamics, Structures, Weight, and Thermodynamic Cycles
,” NASA Glenn Research Center, Cleveland, OH, Report Nos. CR-2010-216794/VOL2, E-17419-2.
17.
Zhao
,
X.
, and
Gronstedt
,
T.
,
2015
, “
Conceptual Design of a Two-Pass Cross-Flow Aeroengine Intercooler
,”
Proc. Inst. Mech. Eng. Part G-J. Aerosp. Eng.
,
229
(
11
), pp.
2006
2023
.
18.
Zhao
,
X.
,
Tokarev
,
M.
,
Hartono
,
E. A.
,
Chernoray
,
V.
, and
Grönstedt
,
T.
,
2016
, “
Experimental Validation of the Aerodynamic Characteristics of an Aero-Engine Intercooler
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
051201
.
19.
Kays
,
W. M.
, and
London
,
A. L.
,
1964
,
Compact Heat Exchangers
,
McGraw-Hill
,
New York
.
20.
Kyprianidis
,
K. G.
,
Rolt
,
A. M.
, and
Gronstedt
,
T.
,
2014
, “
Multidisciplinary Analysis of a Geared Fan Intercooled Core Aero-Engine
,”
ASME J. Eng. Gas Turbines Power
,
136
(
1
), p.
011203
.
21.
Marek
,
C. J.
,
Papathakos
,
L. C.
, and
Verbulecz
,
P. W.
,
1977
, “
Preliminary Studies of Autoignition and Flashback in a Premixing-Prevaporizing Flame Tube Using Jet-A Fuel at Lean Equivalence Ratios
,” NASA Lewis Research Center, Cleveland, OH, Report No.
TMX-3526
.https://ntrs.nasa.gov/search.jsp?R=19770015163
22.
St. George
,
A.
,
Driscoll
,
R.
, and
Gutmark
,
E. D. M.
,
2014
, “
Experimental Comparison of Axial Turbine Performance Under Steady and Pulsating Flows
,”
ASME J. Turbomach.
,
136
(
11
), p.
111005
.
23.
Rouser
,
K. P.
,
King
,
P. I.
,
Schauer
,
F. R.
,
Sondergaard
,
R.
,
Hoke
,
J. L.
, and
Goss
,
L. P.
,
2014
, “
Time-Resolved Flow Properties in a Turbine Driven by Pulsed Detonations
,”
J. Propul. Power
,
30
(
6
), pp.
1528
1536
.
24.
Rasheed
,
A.
,
Furman
,
A. H.
, and
Dean
,
A. J.
,
2009
, “
Pressure Measurements and Attenuation in a Hybrid Multitube Pulse Detonation Turbine System
,”
J. Propul. Power
,
25
(
1
), pp.
148
161
.
25.
St. George
,
A.
,
2016
, “
Development and Testing of Pulsed and Rotating Detonation Combustors
,” Ph.D. thesis, University of Cincinnati, Cincinnati, OH.
26.
Suresh
,
A.
,
Hofer
,
D. C.
, and
Tangirala
,
V. E.
,
2012
, “
Turbine Efficiency for Unsteady, Periodic Flows
,”
ASME J. Turbomach
,
134
(
3
), p.
034501
.
27.
Rolt
,
A.
,
Sethi
,
V.
,
Jacob
,
F.
,
Sebastiampillai
,
J.
,
Xisto
,
C.
,
Grönstedt
,
T.
, and
Raffaelli
,
L.
,
2017
, “
Scale Effects on Conventional and Intercooled Turbofan Engine Performance
,”
Aeronaut. J.
,
121
(
1242
), pp.
1162
1185
.
28.
Pera
,
R. J.
,
Onat
,
E.
,
Klees
,
G.
, and
Tjonneland
,
E.
,
1977
, “
A Method to Estimate Weight and Dimensions of Aircraft Gas Turbine Engines
,” NASA Lewis Research Center, Cleveland, OH Report No. CR-159481.
29.
Korsia
,
J.-J.
, and
Spiegeleer
,
G. D.
,
2006
, “
VITAL, An European R&D Program for Greener Aero-Engines
,”
25th Congress of International Council of the Aeronautical Sciences
, Hamburg, Germany, Sept. 3–8.http://www.transport-research.info/sites/default/files/project/documents/20120518_101201_57961_Vital_European_%20R%26D_Program_for_Greener_Aero-Engines.PDF
30.
Wilfert
,
G.
,
Sieber
,
J.
,
Andrew Rolt
,
N. B.
,
Touyeras
,
A.
, and
Colantuoni
,
S.
,
2007
, “
New Environmental Friendly Aero Engine Core Concepts
,”
XVIII International Symposium of Air Breathing Engines
, Beijing, China, Sept. 2–7, Paper No.
ISABE-2007-1120
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.619.6911&rep=rep1&type=pdf
31.
Larsson
,
L.
,
Grönstedt
,
T.
, and
Kyprianidis
,
K. G.
,
2011
, “
Conceptual Design and Mission Analysis for a Geared Turbofan and an Open Rotor Configuration
,”
ASME
Paper No. GT2011-46451.
32.
Kyprianidis
,
K.
,
Dax
,
A.
,
Ogaji
,
S.
, and
Grönstedt
,
T.
,
2009
, “
Low Pressure System Component Advancements and Its Impact on Future Turbofan Engine Emissions
,”
19th International Symposium on Air Breathing Engines
, Montreal, QC, Canada, Sept. 7–11, Paper No. ISABE-2009-1276.
33.
Zhao
,
X.
,
2016
, “
Aero Engine Intercooling
,” Ph.D. thesis, Chalmers University of Technology, Gothenburg, Sweden.
34.
Heinemann
,
P.
,
Panagiotou
,
P.
,
Vratny
,
P.
,
Kaiser
,
S.
,
Hornung
,
M.
, and
Yakinthos
,
K.
,
2017
, “
Advanced Tube and Wing Aircraft for Year 2050 Timeframe
,”
AIAA
Paper No. AIAA 2017-1390.
35.
Gill
,
P. E.
,
Murray
,
W.
,
Saunders
,
M. A.
, and
Wright
,
M. H.
,
1983
, “
Computing Forward-Difference Intervals for Numerical Optimization
,”
Siam J. Sci. Stat. Comput.
,
4
(
2
), pp.
310
321
.
36.
EASA
,
2018
, “
ICAO Aircraft Engine Emissions Databank Nr. 9
,” European Aviation Safety Agency, Cologne, Germany, accessed June, 26, 2018, https://www.easa.europa.eu/easa-and-you/environment/icao-aircraft-engine-emissions-databank
37.
ICAO
,
2008
,
Enviromental Protection, Annex 16
, Vol.
2
,
International Civil Aviation Organization
,
Montréal, QC, Canada
.
You do not currently have access to this content.