In this paper, we propose a two-step methodology to evaluate the convective heat flux along the rotor casing using an engine-scalable approach based on discrete Green's functions . The first step consists in the use of an inverse heat transfer technique to retrieve the heat flux distribution on the shroud inner wall by measuring the temperature of the outside wall; the second step is the calculation of the convective heat flux at engine conditions, using the experimental heat flux and the Green functions engine-scalable technique. Inverse methodologies allow the determination of boundary conditions; in this case, the inner casing surface heat flux, based on measurements from outside of the system, which prevents aerothermal distortion caused by routing the instrumentation into the test article. The heat flux, retrieved from the inverse heat transfer methodology, is related to the rotor tip gap. Therefore, for a given geometry and tip gap, the pressure and temperature can also be retrieved. In this work, the digital filter method is applied in order to take advantage of the response of the temperature to heat flux pulses. The discrete Green's function approach employs a matrix to relate an arbitrary temperature distribution to a series of pulses of heat flux. In this procedure, the terms of the Green's function matrix are evaluated with the output of the inverse heat transfer method. Given that key dimensionless numbers are conserved, the Green's functions matrix can be extrapolated to engine-like conditions. A validation of the methodology is performed by imposing different arbitrary heat flux distributions, to finally demonstrate the scalability of the Green's function method to engine conditions. A detailed uncertainty analysis of the two-step routine is included based on the value of the pulse of heat flux, the temperature measurement uncertainty, the thermal properties of the material, and the physical properties of the rotor casing.

References

References
1.
Denton
,
J. D.
,
1993
, “
Loss Mechanisms in Turbomachines
,”
ASME J. Turbomach.
,
115
(
4
), pp.
621
656
.
2.
Zhang
,
Q.
,
O'Dowd
,
D. O.
,
He
,
L.
,
Wheeler
,
A. P. S.
,
Ligrani
,
P. M.
, and
Cheong
,
B. C. Y.
,
2011
, “
Overtip Shock Wave Structure and Its Impact on Turbine Blade Tip Heat Transfer
,”
ASME J. Turbomach.
,
133
(
4
), p.
041001
.
3.
Krishnababu
,
S. K.
,
Newton
,
P. J.
,
Dawes
,
W. N.
,
Lock
,
G. D.
,
Hodson
,
H. P.
,
Hannis
,
J.
, and
Whitney
,
C.
,
2009
, “
Aerothermal Investigations of Tip Leakage Flow in Axial Flow Turbines—Part I: Effect of Tip Geometry and Tip Clearance Gap
,”
ASME J. Turbomach.
,
131
(
1
), p.
011006
.
4.
De Maesschalck
,
C.
,
Lavagnoli
,
S.
,
Paniagua
,
G.
, and
Vinha
,
N.
,
2014
, “
Aerothermodynamics of Tight Rotor Tip Clearance Flows in High-Speed Unshrouded Turbines
,”
Appl. Therm. Eng.
,
65
(
1–2
), pp.
343
351
.
5.
Thorpe
,
S. J.
,
Yoshino
,
S.
,
Thomas
,
G. A.
,
Ainsworth
,
R. W.
, and
Harvey
,
N. W.
,
2005
, “
Blade-Tip Heat Transfer in a Transonic Turbine
,”
Proc. Inst. Mech. Eng., Part A: J. Power Energy
,
219
(
6
), pp.
421
430
.
6.
Lavagnoli
,
S.
,
Paniagua
,
G.
,
De Maesschalck
,
C.
, and
Yasa
,
T.
,
2013
, “
Analysis of the Unsteady Overtip Casing Heat Transfer in a High Speed Turbine
,”
ASME J. Turbomach.
,
135
(
3
), p.
031027
.
7.
Polanka
,
M. D.
,
Hoying
,
D. A.
,
Meininger
,
M.
, and
MacArthur
,
C. D.
,
2002
, “
Turbine Tip and Shroud Heat Transfer and Loading: Part A—Parameter Effects Including Reynolds Number, Pressure Ratio, and Gas to Metal Temperature Ratio
,”
ASME
Paper No. GT2002-30186
.
8.
Shyam
,
V.
,
Ameri
,
A.
, and
Chen
,
J. P.
,
2012
, “
Analysis of Unsteady Tip and Endwall Heat Transfer in a Highly Loaded Transonic Turbine Stage
,”
ASME J. Turbomach.
,
134
(
4
), p.
041022
.
9.
Lavagnoli
,
S.
,
De Maesschalck
,
C.
, and
Paniagua
,
G.
,
2015
, “
Uncertainty Analysis of Adiabatic Wall Temperature Measurements in Turbine Experiments
,”
Appl. Therm. Eng.
,
82
, pp.
170
181
.
10.
Lavagnoli
,
S.
,
Paniagua
,
G.
,
Tulkens
,
M.
, and
Steiner
,
A.
,
2012
, “
High-Fidelity Rotor Gap Measurements in a Short-Duration Turbine Rig
,”
Mech. Syst. Signal Process.
,
27
, pp.
590
603
.
11.
Stolz
,
G.
,
1960
, “
Numerical Solutions to an Inverse Problem of Heat Conduction for Simple Shapes
,”
ASME J. Heat Transfer
,
82
(
1
), pp.
20
25
.
12.
Hansen
,
P. C.
,
2010
,
Discrete Inverse Problems: Insight and Algorithms
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
13.
Fletcher
,
R.
,
1968
, “
Generalized Inverse Methods for the Best Least Squares Solution of Systems of Non-Linear Equations
,”
Comput. J.
,
10
(
4
), pp.
392
399
.
14.
Woodbury
,
K. A.
,
2003
,
Inverse Engineering Handbook
,
CRC Press
, Boca Raton, FL.
15.
Demeulenaere
,
A.
, and
Van den Braembussche
,
R.
,
1998
, “
Three-Dimensional Inverse Method for Turbomachinery Blading Design
,”
ASME J. Turbomach.
,
120
(
2
), pp.
247
255
.
16.
De Vito
,
L.
,
Van den Braembussche
,
R. A.
, and
Deconinck
,
H.
,
2003
, “
A Novel Two-Dimensional Viscous Inverse Design Method for Turbomachinery Blading
,”
ASME J. Turbomach.
,
125
(
2
), pp.
310
316
.
17.
Daneshkhah
,
K.
, and
Ghaly
,
W.
,
2007
, “
Aerodynamic Inverse Design for Viscous Flow in Turbomachinery Blading
,”
J. Propul. Power
,
23
(
4
), pp.
814
820
.
18.
Najafi
,
H.
,
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2015
, “
A Filter Based Solution for Inverse Heat Conduction Problems in Multi-Layer Mediums
,”
Int. J. Heat Mass Transfer
,
83
, pp.
710
720
.
19.
Najafi
,
H.
,
Woodbury
,
K. A.
, and
Beck
,
J. V.
,
2015
, “
Real Time Solution for Inverse Heat Conduction Problems in a Two-Dimensional Plate With Multiple Heat Fluxes at the Surface
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1148
1156
.
20.
Beck
,
J. V.
,
Blackwell
,
B.
, and
St. Clair
,
C. R.
, Jr.
,
1985
,
Inverse Heat Conduction: Ill-Posed Problems
,
Wiley
, New York.
21.
Hahn
,
D. W.
, and
Necati Özişik
,
M.
,
2012
, “
Use of Duhamel's Theorem
,”
Heat Conduction
,
3rd ed.
, Wiley, Hoboken, NJ, pp.
273
299
.
22.
Anderson
,
A. M.
, and
Moffat
,
R. J.
,
1992
, “
The Adiabatic Heat Transfer Coefficient and the Superposition Kernel Function: Part 1—Data for Arrays of Flatpacks for Different Flow Conditions
,”
ASME J. Electron. Packag.
,
114
(
1
), pp.
14
21
.
23.
Vick
,
B.
,
Beale
,
J. H.
, and
Frankel
,
J. I.
,
1987
, “
Integral Equation Solution for Internal Flow Subjected to a Variable Heat Transfer Coefficient
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
856
860
.
24.
Moffat
,
R. J.
,
1997
, “
What's New in Convective Heat Transfer?
,”
Int. J. Heat Fluid
,
19
(
2
), pp.
90
101
.
25.
Booten
,
C.
, and
Eaton
,
J.
,
2005
, “
Discrete Green's Function Measurements in Internal Flows
,”
ASME J. Heat Transfer
,
127
(
7
), pp.
692
698
.
26.
Booten
,
C.
, and
Eaton
,
J.
,
2007
, “
Discrete Green's Function Measurements in a Serpentine Cooling Passage
,”
ASME J. Heat Transfer
,
129
(
12
), pp.
1686
1696
.
27.
Mukerji
,
D.
, and
Eaton
,
J. K.
,
2005
, “
Discrete Green's Function Measurements in a Single Passage Turbine Model
,”
ASME J. Heat Transfer
,
127
(
4
), pp.
366
377
.
28.
Colaço
,
M. J.
,
Orlande
,
H. R. B.
, and
Dulikravich
,
G. S.
,
2006
, “
Inverse and Optimization Problems in Heat Transfer
,”
J. Braz. Soc. Mech. Sci. Eng.
,
28
(
1
), pp.
1
24
.
29.
Ozisik
,
M. N.
, and
Orlande
,
H. R. B.
,
2000
,
Inverse Heat Transfer: Fundamentals and Applications
,
Taylor and Francis
,
New York
.
30.
Gonzalez Cuadrado
,
D.
,
Marconnet
,
A.
, and
Paniagua
,
G.
,
2018
, “
Inverse Conduction Heat Transfer and Kringing Interpolation Applied to Temperature Sensor Location in Microchips
,”
ASME J. Electron. Packag.
,
140
(
1
), p.
010905
.
31.
Tikhonov
,
A. N.
,
1975
, “
Inverse Problems in Heat Conduction
,”
J. Eng. Phys.
,
29
(
1
), pp.
816
820
.
32.
Andreoli
,
V.
,
Gonzalez Cuadrado
,
D.
, and
Paniagua
,
G.
,
2018
, “
Prediction of the Turbine Tip Convective Heat Flux Using Discrete Green Functions
,”
ASME J. Heat Transfer.
,
140
(
7
), p.
071703
.
33.
Denos
,
R.
,
1996
, “
Etude Aero-Dynamique Et Thermique De L'ecoulement Instationnaire Dans Un Rotor De Turbine Transsonique
,” Ph.D. thesis, University of Poitiers, Poitiers, France.
34.
Paniagua
,
G.
,
Cuadrado
,
D.
,
Saavedra
,
J.
,
Andreoli
,
V.
,
Meyer
,
T.
,
Meyer
,
S.
, and
Lawrence
,
D.
,
2016
, “
Design of the Purdue Experimental Turbine Aerothermal Laboratory for Optical and Surface Aero-Thermal Measurements
,”
ASME
Paper No. GT2016-58101
.
35.
Saavedra
,
J.
,
Paniagua
,
G.
, and
Saracoglu
,
B. H.
,
2017
, “
Experimental Characterization of the Vane Heat Flux Under Pulsating Trailing-Edge Blowing
,”
ASME J. Turbomach.
,
139
(
6
), p.
061004
.
You do not currently have access to this content.