The dynamic modeling of energy systems can be used for different purposes, obtaining important information both for the design phase and control system strategies, increasing the confidence during experimental phase. Such analysis in dynamic conditions is generally performed considering fixed values for both geometrical and operational parameters such as volumes, orifices, but also initial temperatures, pressure. However, such characteristics are often subject to uncertainty, either because they are not known accurately or because they may depend on the operating conditions at the beginning of the relevant transient. With focus on a gas turbine fuel cell hybrid system (HS), compressor surge may or may not occur during transients, depending on the aforementioned cycle characteristics; hence, compressor surge events are affected by uncertainty. In this paper, a stochastic analysis was performed taking into account an emergency shut-down (ESD) in a fuel cell gas turbine HS, modeled with TRANSEO, a deterministic tool for the dynamic simulations. The aim of the paper is to identify the main parameters that impact on compressor surge margin. The stochastic analysis was performed through the response sensitivity analysis (RSA) method, a sensitivity-based approximation approach that overcomes the computational burden of sampling methods. The results show that the minimum surge margin occurs in two different ranges of rotational speed: a high-speed range and a low-speed range. The temperature and geometrical characteristics of the pressure vessel, where the fuel cell is installed, are the two main parameters that affect the surge margin during an emergency shut down.

References

References
1.
Larminie
,
J.
, and
Dicks
,
A.
,
2003
,
Fuel Cell Systems Explained
,
2nd ed.
,
Wiley
,
Chichester, UK
.
2.
Rao
,
A.
,
MacLay
,
J.
, and
Samuelsen
,
S.
,
2004
, “
Efficiency of Electrochemical Systems
,”
J. Power Sources
,
134
(
2
), pp.
181
184
.
3.
Richards
,
G. A.
,
McMillian
,
M. M.
,
Gemmen
,
R. S.
,
Rogers
,
W. A.
, and
Cully
,
S. R.
,
2001
, “
Issues for Low-Emission, Fuel-Flexible Power Systems
,”
Prog. Energy Combust. Sci.
,
27
(
2
), pp.
141
169
.
4.
Pezzini
,
P.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2013
, “
Avoiding Compressor Surge During Emergency Shutdown Hybrid Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
135
(
10
), p.
102602
.
5.
Cuneo
,
A.
,
Traverso
,
A.
, and
Shahpar
,
S.
,
2017
, “
Comparative Analysis of Methodologies for Uncertainty Propagation and Quantification
,”
ASME
Paper No. GT2017-63238.
6.
Padulo
,
M.
,
Campobasso
,
M. S.
, and
Guenov
,
M. D.
,
2007
, “
Comparative Analysis of Uncertainty Propagation Methods for Robust Engineering Design
,”
International Conference on Engineering Design
(ICED), Paris, France, Aug. 28–31, Paper No.
ICED' 07/158
.https://www.designsociety.org/download-publication/25352/comparative_analysis_of_uncertainty_propagation_methods_for_robust_engineering_design
7.
Hiskens
,
I. A.
,
Pai
,
M. A.
, and
Nguyen
,
T. B.
,
2000
, “
Bounding Uncertainty in Power System Dynamic Simulations
,”
IEEE Power Engineering Society Winter Meeting
, Singapore, Jan. 23–27, pp.
1533
1537
.
8.
Hiskens
,
I. A.
, and
Alseddiqui
,
J.
,
2006
, “
Sensitivity, Approximation and Uncertainty in Power System Dynamic Simulation
,”
IEEE Trans. Power Syst.
,
21
(
4
), pp.
1808
1820
.
9.
Kim
,
K.
,
von Spakovsky
,
M. R.
,
Wang
,
M.
, and
Nelson
,
D. J.
,
2012
, “
Dynamic Optimization Under Uncertainty of the Synthesis/Design and Operation/Control of a Proton Exchange Membrane Fuel Cell System
,”
J. Power Sources
,
205
, pp.
252
263
.
10.
Abrassi
,
A.
,
Cuneo
,
A.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2017
, “
Fuel Cell Microturbine Hybrid System Analysis Through Different Uncertainty Quantification Methods
,”
ASME
Paper No. GT2017-63178.
11.
Mawardi
,
A.
, and
Pitchumani
,
R.
,
2006
, “
Effects of Parameter Uncertainty on the Performance Variability of Proton Exchange Membrane (PEM) Fuel Cells
,”
J. Power Sources
,
160
(
1
), pp.
232
245
.
12.
Massardo
,
A. F.
,
2005
, “
Integrated Planar Solid Oxide Fuel Cell (IP-SOFC) Hybrid Systems: Design, Off-Design, Transient Modelling and Validation, Invited Lecture
,”
The 21st Century COE Program Mechanical Systems Innovation Energy Innovation Projects
, Tokyo, Japan, Dec. 7–8.
13.
Gorla
,
R. S. R.
,
2004
, “
Probabilistic Analysis of a Solid-Oxide Fuel-Cell Based Hybrid Gas-Turbine System
,”
Appl. Energy
,
78
(
1
), pp.
63
74
.
14.
Subramanyan
,
K.
,
Diwekar
,
U. M.
, and
Goyal
,
A.
, “
Multi-Objective Optimization for Hybrid Fuel Cells Power System Under Uncertainty
,”
J. Power Sources
,
132
(
1–2
), pp.
99
112
.
15.
Subramanyan
,
K.
, and
Diwekar
,
U.
,
2005
, “
Characterization and Quantification of Uncertainty in Solid Oxide Fuel Cell Hybrid Power System
,”
J. Power Sources
,
142
(
1–2
), pp.
103
116
.
16.
He
,
Z.
,
Li
,
H.
, and
Birgersson
,
E.
,
2014
, “
Correlating Variability of Modeling Parameters With Non-Isothermal Stack Performance: Monte Carlo Simulation of a Portable 3D Planar Solid Oxide Fuel Cell Stack
,”
Appl. Energy
,
136
, pp.
560
575
.
17.
Biagiola
,
S. I.
,
Schmidt
,
C.
, and
Figueroa
,
J. L.
,
2014
, “
Model Uncertainty Estimation of a Solid Oxide Fuel Cell Using a Volterra-Type Model
,”
J. Franklin Inst.
,
351
(
8
), pp.
4183
4197
.
18.
Zang
,
C.
,
Frieswell
,
M. I.
, and
Mottershead
,
J. E.
,
2005
, “
A Review of Robust Optimal Design and Its Application in Dynamics
,”
Comput. Struct.
,
83
(
4–5
), pp.
315
332
.
19.
Ferrari
,
M. L.
,
Silvestri
,
P.
,
Pascenti
,
M.
,
Reggio
,
F.
, and
Massardo
,
A. F.
, “
Experimental Dynamic Analysis on a T100 Microturbine Connected With Different Volume Sizes
,”
ASME J. Eng. Gas Turbines Power
,
140
(
2
), p.
021701
.
20.
Lambruschini
,
F.
,
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Larosa
,
L.
,
2014
, “
Emergency Shutdown Management in Fuel Cell Gas Turbine Hybrid Systems
,”
ASME
Paper No. GT2014-25432.
21.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
, “
Application of a One-Dimensional Modular Dynamic Model for Compressor Surge Avoidance
,”
ASME
Paper No. GT2007-27041.
22.
Hildebrandt
,
A.
,
Genrup
,
M.
, and
Assadi
,
M.
, “
Steady-State and Transient Compressor Surge Behavior Within a SOFC-GT-Hybrid System
,”
ASME
Paper No. GT2004-53892.
23.
Rakopoulos
,
C. D.
,
Michos
,
C. N.
, and
Giakoumis
,
E. G.
,
2007
, “
A Computational Study of Compressor Surge During Transient Operation of Turbocharged Diesel Engines
,”
Int. J. Altern. Propul.
,
1
(
2/3
), pp.
250
27493
.
24.
Hildebrandt
,
A.
, and
Assadi
,
M.
,
2005
, “
Sensitivity Analysis of Transient Compressor Operation Behaviour in SOFC-GT Hybrid Systems
,”
ASME
Paper No. GT2005-68744.
25.
Lange
,
A.
,
Voigt
,
M.
,
Vogeler
,
K.
,
Schrapp
,
H.
,
Johann
,
E.
, and
Gummer
,
V.
,
2010
, “
Probabilistic CFD Simulation of a High–Pressure Compressor Stage Taking Manufacturing Variability Into Account
,”
ASME
Paper No. GT2010-22484.
26.
Traverso
,
A.
,
2005
, “
TRANSEO Code for the Dynamic Performance Simulation of Micro Gas Turbine Cycles
,”
ASME
Paper No. GT2005-68101.
27.
Traverso
,
A.
,
Calzolari
,
F.
, and
Massardo
,
A. F.
, 2005, “
Transient Behaviour of and Control System for Micro Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
127
, pp.
340
347
.
28.
Magistri
,
L.
,
Bozzolo
,
M.
,
Tarnowsky
,
O.
,
Agnew
,
G.
, and
Massardo
,
A. F.
,
2007
, “
Design and Off-Design Analysis of a MW Hybrid System Based on Rolls-Royce Integrated Planar Solid Oxide Fuel Cells
,”
ASME J. Eng. Gas Turbines Power
,
129
(
3
), pp.
792
797
.
29.
Trasino
,
F.
,
Bozzolo
,
M.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2009
, “
Modelling and Performance Analysis of the Rolls-Royce Fuel Cell Systems Limited 1 MW Plant
,”
ASME
Paper No. GT2009-59328.
30.
Saunders
,
G.
,
Bozzolo
,
M.
,
Butler
,
P.
, and
Agnew
,
G.
, “
A Solid Oxide Fuel Cell System
,” Patent No. WO2012013460 (A1).
31.
Larosa
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2016
, “
Dynamic Analysis of a Recuperated mGT Cycle for Fuel Cell Hybrid Systems
,”
ASME
Paper No. GT2016-57312.
32.
Traverso
,
A.
,
Massardo
,
A. F.
, and
Scarpellini
,
R.
,
2006
, “
Externally Fired Micro-Gas Turbine: Modelling and Experimental Performance
,”
Appl. Therm. Eng.
,
26
(
16
), pp.
1935
1941
.
33.
Ferrari
,
M. L.
,
Pascenti
,
M.
, and
Massardo
,
A. F.
,
2008
, “
Ejector Model for High Temperature Fuel Cell Hybrid Systems: Experimental Validation at Steady-State and Dynamic Conditions
,”
ASME J. Fuel Cell Sci. Technol.
,
5
(
4
), p.
041005
.
34.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Krieger Publishing Company
,
Malabar, FL
.
35.
David Alan
,
F.
,
Cumpsty
,
N. A.
, and
Greitzer
,
E. M.
,
1992
, “
Surge Dynamics in a Free-Spool Centrifugal Compressor System
,”
ASME J. Turbomach.
,
114
(
2
), pp.
321
332
.
36.
Ferrari
,
M. L.
,
2015
, “
Advanced Control Approach for Hybrid Systems Based on Solid Oxide Fuel Cells
,”
Appl. Energy
,
145
, pp.
364
373
.
37.
Abrassi
,
A.
,
Cuneo
,
A.
, and
Traverso
,
A.
,
2015
, “
Off-Design Analysis of a Micro Gas Turbine Under Stochastic Conditions
,” Sustainable Places 2015, Savona, Italy, Sept. 16–18, Paper No. 1.
You do not currently have access to this content.