The aerothermal performance of the low-pressure turbine in unmanned aerial vehicles is significantly abated at high altitude, due to boundary layer separation. Different flow control strategies have been proposed to prevent boundary layer separation, such as dielectric barrier discharges (DBD) and synthetic jets. However, the optimization of the control approach requires a better characterization of the separated regions at transient conditions. The present investigation analyzes the behavior of separated flows, reporting the inception and separation length, allowing the development of efficient flow control methods under nontemporally uniform inlet conditions. The development of separated flows was investigated with numerical simulations including Unsteady Reynolds average Navier–Stokes (URANS) and large Eddy simulations (LES). The present research was performed on a wall-mounted hump, which imposes a pressure gradient representative of the suction side of low pressure turbines. Through sudden flow accelerations, we looked into the dynamic response of the shear layer detachment as it is modulated by the mean flow evolution. Similarly, we studied the behavior of the recirculation bubble under periodic disturbances imposed at various frequencies ranging from 10 to 500 Hz, at which the Reynolds number oscillates between 40,000 and 180,000. As a first step into the flow control, we added a slot to allow flow injection and ingestion upstream of the separation inception. Exploring the behavior of the separated region at different conditions, we defined the envelope for its periodic actuation. We found that by matching the actuator frequency with the frequency response of the separated region, the performance of the actuation is boosted.

References

1.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,”
ASME
Paper No. 2001-GT-0190.
2.
Goldberg
,
C.
,
Nalianda
,
D.
,
Pilidis
,
P.
,
MacManus
,
D.
, and
Felder
,
J.
,
2016
, “
Installed Performance Assessment of a Boundary Layer Ingesting Distributed Propulsion System at Design Point
,”
AIAA
Paper No. AIAA 2016-4800.
3.
Sharma
,
O.
,
1998
, “
Impact of Reynolds Number on Low Pressure Turbine Performance
,” NASA, New York, Report No. CP-1998-206958.
4.
Hura
,
H. S.
,
Joseph
,
J.
, and
Halstead
,
D. E.
,
2012
, “
Reynolds Number Effects in a Low Pressure Turbine
,”
ASME
Paper No. GT2012-68501.
5.
Gad-el-Hak
,
M.
,
1996
, “
Modern Developments in Flow Control
,”
ASME Appl. Mech. Rev.
,
49
(
7
), pp.
365
380
.
6.
Byerley
,
A. R.
,
Sto¨rmer
,
O.
,
Baughn
,
J. W.
,
Simon
,
T. W.
,
Van Treuren
,
K. W.
, and., and
List
,
J. R.
, 2002, “
Using Gurney Flaps to Control Laminar Separation on Linear Cascade Blades
,”
ASME
Paper No. GT2002-30662.
7.
Lake
,
J.
,
King
,
P.
, and
Rivir
,
R.
,
1999
, “
Reduction of Separation Losses on a Turbine Blade With Low Reynolds Numbers
,”
37th Aerospace Sciences Meeting and Exhibit
, p.
242
.
8.
Volino
,
R. J.
,
2003
, “
Passive Flow Control on Low-Pressure Turbine Airfoils
,”
ASME J. Turbomach.
,
125
(
4
), pp.
754
764
.
9.
Greenblatt
,
D.
, and
Wygnanski
,
I. J.
,
2000
, “
The Control of Flow Separation by Periodic Excitation
,”
Prog. Aerosp. Sci.
,
36
(
7
), pp.
487
545
.
10.
Hultgren
,
L. S.
, and
Ashpis
,
D. E.
,
2003
, “
Demonstration of Separation Delay With Glow-Discharge Plasma Actuators
,”
AIAA
Paper No. 2003-1025.
11.
Poggie
,
J.
,
2005
, “
DC Glow Discharges: A Computational Study for Flow Control Applications
,”
AIAA
Paper No. 2005-5303.
12.
Roy
,
S.
, and
Gaitonde
,
D. V.
,
2005
, “
Multidimensional Collisional Dielectric Barrier Discharge for Flow Separation Control at Atmospheric Pressures
,” 35th AIAA Fluid Dynamics Conference and 36th AIAA Plasma Dynamics and Lasers Conference, Toronto, Canada, June 6–9, p. 4631.
13.
Moreau
,
E.
,
2007
, “
Airflow Control by Non-Thermal Plasma Actuators
,”
J. Phys. D: Appl. Phys.
,
40
(
3
), p.
605
.
14.
Huang
,
J.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
,
2006
, “
Unsteady Plasma Actuators for Separation Control of Low-Pressure Turbine Blades
,”
AIAA J.
,
44
(
7
), pp.
1477
1487
.
15.
Göksel
,
B.
,
Greenblatt
,
D.
,
Rechenberg
,
I.
,
Singh
,
Y.
,
Nayeri
,
C.
, and
Paschereit
,
C.
,
2006
, “
Pulsed Plasma Actuators for Separation Flow Control
,”
Momentum
, p.
11
.
16.
Porter
,
C.
,
McLaughlin
,
T.
,
Enloe
,
C.
,
Font
,
G.
,
Roney
,
J.
, and
Baughn
,
J.
,
2007
, “
Boundary Layer Control Using a DBD Plasma Actuator
,”
AIAA
Paper No. 2007-786.
17.
Post
,
M. L.
, and
Corke
,
T. C.
,
2004
, “
Separation Control on High Angle of Attack Airfoil Using Plasma Actuators
,”
AIAA J.
,
42
(
11
), pp.
2177
2184
.
18.
Gaitonde
,
D. V.
,
Visbal
,
M. R.
, and
Roy
,
S.
,
2005
, “
Control of Flow past a Wing Section With Plasma-Based Body Forces
,”
AIAA
Paper No. 2005-5302.
19.
Rethmel
,
C.
,
Little
,
J.
,
Takashima
,
K.
,
Sinha
,
A.
,
Adamovich
,
I.
, and
Samimy
,
M.
,
2011
, “
Flow Separation Control Over an Airfoil With Nanosecond Pulse Driven DBD Plasma Actuators
,”
AIAA
Paper No. 2011-487.
20.
Volino
,
R. J.
,
2003
, “
Separation Control on Low-Pressure Turbine Airfoils Using Synthetic Vortex Generator Jets
,”
ASME J. Turbomach.
,
125
(
4
), pp.
765
777
.
21.
Sondergaard
,
R.
,
Rivir
,
R. B.
, and
Bons
,
J. P.
,
2002
, “
Control of Low-Pressure Turbine Separation Using Vortex-Generator Jets
,”
J. Propulsion Power
,
18
(
4
), pp.
889
895
.
22.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D. E.
,
2005
, “
On the Physics of Flow Separation along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
,”
ASME J. Fluids Eng.
,
127
(
3
), pp.
503
513
.
23.
Wissink
,
J.
,
2003
, “
DNS of Separating, Low Reynolds Number Flow in a Turbine Cascade With Incoming Wakes
,”
Int. J. Heat Fluid Flow
,
24
(
4
), pp.
626
635
.
24.
Seifert
,
A.
, and
Pack
,
L. G.
,
2002
, “
Active Flow Separation Control on Wall-Mounted Hump at High Reynolds Numbers
,”
AIAA J.
,
40
(
7
), pp.
1363
1372
.
25.
He
,
C.
,
Corke
,
T. C.
, and
Patel
,
M. P.
,
2007
, “
Numerical and Experimental Analysis of Plasma Flow Control Over a Hump Model
,”
AIAA
Paper No. 2007-935.
26.
Pescini
,
E.
,
Marra
,
F.
,
De Giorgi
,
M.
,
Francioso
,
L.
, and
Ficarella
,
A.
,
2017
, “
Investigation of the Boundary Layer Characteristics for Assessing the DBD Plasma Actuator Control of the Separated Flow at Low Reynolds Numbers
,”
Exp. Therm. Fluid Sci.
,
81
, pp.
482
498
.
27.
Martínez
,
D.
,
Pescini
,
E.
,
Marra
,
F.
,
De Giorgi
,
M.
, and
Ficarella
,
A.
, “
Analysis of the Performance of Plasma Actuators Under Low-Pressure Turbine Conditions Based on Experiments and URANS Simulations
,”
ASME
Paper No. GT2017-64867.
28.
Celik
,
I. B.
,
Ghia
,
U.
, and
Roache
,
P. J.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in {CFD} Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.
29.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.
30.
Menter
,
F.
,
Langtry
,
R.
, and
Völker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combust.
,
77
(
1-4
), pp.
277
303
.
31.
Clark
,
J.
, and
Grover
,
E.
,
2007
, “
Assessing Convergence in Predictions of Periodic-Unsteady Flowfields
,”
ASME J. Turbomach.
,
129
(
4
), pp.
740
749
.
32.
Vogel
,
J.
, and
Eaton
,
J.
,
1985
, “
Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step
,”
ASME J. Heat Transfer
,
107
(
4
), pp.
922
929
.
33.
Germano
,
M.
,
Piomelli
,
U.
,
Moin
,
P.
, and
Cabot
,
W. H.
,
1991
, “
A Dynamic Subgrid‐Scale Eddy Viscosity Model
,”
Phys. Fluids A: Fluid Dyn. (1989-1993)
,
3
(
7
), pp.
1760
1765
.
34.
Lilly
,
D. K.
,
1992
, “
A Proposed Modification of the Germano Subgrid‐Scale Closure Method
,”
Phys. Fluids A: Fluid Dyn. (1989-1993)
,
4
(
3
), p.
633
.
35.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman's Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), p.
011702
.
36.
Chapman
,
D. R.
,
1979
, “
Computational Aerodynamics Development and Outlook
,”
AIAA J.
,
17
(
12
), pp.
1293
1313
.
37.
Launder
,
B. E.
, and
Jones
,
W. P.
,
1968
,
On the Prediction of Laminarisation
, ARC Heat and Mass Transfer Subcommittee Meeting, Apr. 5.
38.
Spalart
,
P. R.
,
1986
, “
Numerical Simulation of Boundary Layers—Part 3: Turbulence and Relaminarization in Sink Flows
,” National Aeronautics and Space Administration, Washington, DC, Report No.
NASA-TM-88220
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19880004901.pdf
39.
Biswas
,
G.
,
Breuer
,
M.
, and
Durst
,
F.
,
2004
, “
Backward-Facing Step Flows for Various Expansion Ratios at Low and Moderate Reynolds Numbers
,”
ASME J. Fluids Eng.
,
126
(
3
), pp.
362
374
.
40.
Huang
,
J.
,
Corke
,
T. C.
, and
Thomas
,
F. O.
,
2006
, “
Plasma Actuators for Separation Control of Low-Pressure Turbine Blades
,”
AIAA J.
,
44
(
7
), pp.
51
57
.
You do not currently have access to this content.