Experimental work on reactivity-controlled compression ignition (RCCI) in a small-bore, multicylinder engine operating on premixed iso-octane, and direct-injected n-heptane has shown an unexpected combustion phasing advance at early injection timings, which has not been observed in large-bore engines operating under RCCI at similar conditions. In this work, computational fluid dynamics (CFD) simulations were performed to investigate whether spray–wall interactions could be responsible for this result. Comparison of the spray penetration, fuel film mass, and in-cylinder visualization of the spray from the CFD results to the experimentally measured combustion phasing and emissions provided compelling evidence of strong fuel impingement at injection timings earlier than −90 crank angle degrees (deg CA) after top dead center (aTDC), and transition from partial to full impingement between −65 and −90 deg CA aTDC. Based on this evidence, explanations for the combustion phasing advance at early injection timings are proposed along with potential verification experiments.

References

References
1.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.
2.
Reitz
,
R. D.
, and
Duraisamy
,
G.
,
2015
, “
Review of High Efficiency and Clean Reactivity Controlled Compression Ignition (RCCI) Combustion in Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
46
, pp.
12
71
.
3.
Wissink
,
M. L.
,
Curran
,
S. J.
,
Roberts
,
G.
,
Musculus
,
M. P.
, and
Mounaïm-Rousselle
,
C.
,
2017
, “
Isolating the Effects of Reactivity Stratification in Reactivity-Controlled Compression Ignition With Iso-Octane and n-Heptane on a Light-Duty Multi-Cylinder Engine
,”
Int. J. Engine Res.
, eub.
4.
Stanglmaier
,
R. H.
,
Li
,
J.
, and
Matthews
,
R. D.
,
1999
, “
The Effect of In-Cylinder Wall Wetting Location on the HC Emissions From SI Engines
,”
SAE
Paper No. 1999-01-0502.
5.
Dempsey
,
A. B.
,
Curran
,
S. J.
, and
Wagner
,
R. M.
,
2016
, “
A Perspective on the Range of Gasoline Compression Ignition Combustion Strategies for High Engine Efficiency and Low NOx and Soot Emissions: Effects of In-Cylinder Fuel Stratification
,”
Int. J. Engine Res.
,
17
(
8
), pp.
897
917
.
6.
Dempsey
,
A. B.
,
Curran
,
S.
,
Wagner
,
R.
, and
Cannella
,
W.
,
2015
, “
Effect of Premixed Fuel Preparation for Partially Premixed Combustion With a Low Octane Gasoline on a Light-Duty Multicylinder Compression Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
137
(
11
), p.
111506
.
7.
Sellnau
,
M.
,
Foster
,
M.
,
Moore
,
W.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Klemm
,
W.
,
2016
, “
Second Generation GDCI Multi-Cylinder Engine for High Fuel Efficiency and US Tier 3 Emissions
,”
SAE Int. J. Engines
,
9
(
2
), pp.
1002
1020
.
8.
DelVescovo
,
D.
,
Kokjohn
,
S.
, and
Reitz
,
R.
,
2017
, “
The Effects of Charge Preparation, Fuel Stratification, and Premixed Fuel Chemistry on Reactivity Controlled Compression Ignition (RCCI) Combustion
,”
SAE Int. J. Engines
,
10
(
4
), pp.
1491
1505
.
9.
Amsden
,
A. A.
,
1999
, “
KIVA-3V, Release 2, Improvements to KIVA-3V
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-UR-99-915
.https://www.lanl.gov/projects/feynman-center/deploying-innovation/intellectual-property/software-tools/kiva/_assets/docs/KIVA3V.pdf
10.
Perini
,
F.
,
Galligani
,
E.
, and
Reitz
,
R. D.
,
2012
, “
An Analytical Jacobian Approach to Sparse Reaction Kinetics for Computationally Efficient Combustion Modeling With Large Reaction Mechanisms
,”
Energy Fuels
,
26
(
8
), pp.
4804
4822
.
11.
Lim
,
J. H.
, and
Reitz
,
R. D.
,
2014
, “
High Load (21 Bar IMEP) Dual Fuel RCCI Combustion Using Dual Direct Injection
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101514
.
12.
Wang
,
H.
,
Deneys Reitz
,
R.
,
Yao
,
M.
,
Yang
,
B.
,
Jiao
,
Q.
, and
Qiu
,
L.
,
2013
, “
Development of an n-Heptane-n-Butanol-PAH Mechanism and Its Application for Combustion and Soot Prediction
,”
Combust. Flame
,
160
(
3
), pp.
504
519
.
13.
Abani
,
N.
,
Munnannur
,
A.
, and
Reitz
,
R. D.
,
2008
, “
Reduction of Numerical Parameter Dependencies in Diesel Spray Models
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032809
.
14.
Abani
,
N.
,
Kokjohn
,
S.
,
Park
,
S.
,
Bergin
,
M.
,
Munnannur
,
A.
,
Ning
,
W.
,
Sun
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
An Improved Spray Model for Reducing Numerical Parameter Dependencies in Diesel Engine CFD Simulations
,”
SAE
Paper No. 2008-01-0970.
15.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model
,”
Atomization Sprays
,
9
(
6
), pp.
623
650
.
16.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ–ε Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
17.
Munnannur
,
A.
,
2007
, “
Droplet Collision Modeling in Multi-Dimensional Engine Spray Computation
,” Ph.D. thesis, University of Wisconsin, Madison, WI.
18.
O'Rourke
,
P. J.
, and
Amsden
,
A.
,
2000
, “
A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model
,”
SAE
Paper No. 2000-01-0271.
19.
Yarin
,
A.
, and
Weiss
,
D.
,
1995
, “
Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity
,”
J. Fluid Mech.
,
283
(
1
), pp.
141
173
.
20.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.
21.
Naber
,
J.
, and
Reitz
,
R. D.
,
1988
, “
Modeling Engine Spray/Wall Impingement
,”
SAE
Paper No. 880107.
22.
Chuahy
,
F. D.
, and
Kokjohn
,
S. L.
,
2017
, “
Effects of the Direct-Injected Fuel's Physical and Chemical Properties on Dual-Fuel Combustion
,”
Fuel
,
207
, pp.
729
740
.
23.
Kavuri
,
C.
,
Paz
,
J.
, and
Kokjohn
,
S. L.
,
2016
, “
A Comparison of Reactivity Controlled Compression Ignition (RCCI) and Gasoline Compression Ignition (GCI) Strategies at High Load, Low Speed Conditions
,”
Energy Convers. Manage.
,
127
, pp.
324
341
.
24.
Kavuri
,
C.
,
Kokjohn
,
S. L.
,
Klos
,
D. T.
, and
Hou
,
D.
,
2016
, “
Blending the Benefits of Reactivity Controlled Compression Ignition and Gasoline Compression Ignition Combustion Using an Adaptive Fuel Injection System
,”
Int. J. Engine Res.
,
17
(
8
), pp.
811
824
.
25.
Storey
,
J.
,
Curran
,
S.
,
Dempsey
,
A.
,
Lewis
,
S.
,
Walker
,
N. R.
,
Reitz
,
R.
, and
Wright
,
C.
,
2015
, “
The Contribution of Lubricant to the Formation of Particulate Matter With Reactivity Controlled Compression Ignition in Light-Duty Diesel Engines
,”
Emiss. Control Sci. Technol.
,
1
(
1
), pp.
64
79
.
You do not currently have access to this content.