The catalytic generation of ammonia from a liquid urea solution is a critical process determining the performance of selective catalytic reduction (SCR) systems. Solid deposits on the catalyst surface from the decomposition of urea have to be avoided, as this leads to reduced system performance or even failure. At present, reactor design is often empirical, which poses a risk for costly iterations due to insufficient system performance. The presented research project proposed a performance prediction and modeling approach for SCR hydrolysis reactors generating ammonia from urea. Different configurations of hydrolysis reactors were investigated experimentally. Ammonia concentration measurements provided information about parameters influencing the decomposition of urea and the system performance. The evaporation of urea between injection and interaction with the catalyst was identified as the critical process driving the susceptibility to deposit formation. The spray of urea solution was characterized in terms of velocity distribution by means of particle-image velocimetry. Results were compared with theoretical predictions and calculation options for processes in the reactor were determined. Numerical simulation was used as an additional design and optimization tool of the proposed model. The modeling approach is presented by a step-by-step method, which takes into account design constraints and operating conditions for hydrolysis reactors.

References

References
1.
EPA
,
1999
, “
In-Use Marine Diesel Fuel
,” United States Environmental Protection Agency, Washington DC, Technical Report No. EPA420-R-99-027.
2.
Schaber
,
P. M.
,
Colson
,
J.
,
Higgins
,
S.
,
Thielen
,
D.
,
Anspach
,
B.
, and
Brauer
,
J.
,
2004
, “
Thermal Decomposition (Pyrolysis) of Urea in an Open Reaction Vessel
,”
Thermochim. Acta
,
424
(
1–2
), pp.
131
142
.
3.
Fang
,
H. L.
, and
DaCosta
,
H. F.
,
2003
, “
Urea Thermolysis and NOx Reduction With and Without SCR Catalysts
,”
Appl. Catal. B: Environ.
,
46
(
1
), pp.
17
34
.
4.
Steinbach
,
S.
,
2007
, “
Einfluss der Transportvorgnge auf die Effizienz von Harnstoffkatalysatoren in SCR-Abgasanlagen
,” Ph.D. thesis, Technical University Munich, Munich, Germany.
5.
Birkhold
,
F.
,
Meingast
,
U.
,
Wassermann
,
P.
, and
Deutschmann
,
O.
,
2006
, “
Analysis of the Injection of Urea-Water-Solution for Automotive SCR DeNOx-Systems: Modeling of Two-Phase Flow and Spray/Wall-Interaction
,”
SAE
Paper No. 2006-01-0643.
6.
VDI-Gesellschaft
,
2013
,
VDI-Wärmeatlas
,
11th ed.
,
Springer-Verlag
,
Berlin
.
7.
Fuller
,
E. N.
,
Ensley
,
K.
, and
Giddings
,
J. C.
,
1969
, “
Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections
,”
J. Phys. Chem.
,
73
(
11
), pp.
3679
3685
.
8.
Hauck
,
P. C. D. P.
,
2007
, “
Surface Chemistry and Kinetics of the Hydrolysis of Isocyanic Acid on TiO2 Anatase
,”
Ph.D. thesis
, Technical University Munich, Munich, Germany.https://mediatum.ub.tum.de/doc/620806/620806.pdf
9.
Kleemann
,
M.
,
Elsener
,
M.
,
Koebel
,
M.
, and
Wokaun
,
A.
,
2000
, “
Hydrolysis of Isocyanic Acid on SCR Catalysts
,”
Ind. Eng. Chem. Res.
,
39
(
11
), pp.
4120
4126
.
10.
Baerns
,
M.
,
Behr
,
A.
,
Brehm
,
A.
,
Gmehling
,
J.
,
Hinrichsen
,
K. O.
,
Hofmann
,
H.
,
Onken
,
U.
,
Palkovits
,
R.
, and
Renken
,
A.
,
2013
,
Technische Chemie
,
Wiley-VCH Verlag
, Weinheim, Germany.
11.
Nova
,
I.
, and
Tronconi
,
E.
,
2014
,
Urea-SCR Technology for deNOx after Treatment of Diesel Exhausts
,
Springer-Verlag
,
Berlin
.
12.
Stein
,
S.
,
2005
, “
On-Board-Reduktionsmittelherstellung zur NOx-Emissionsminderung bei Dieselfahrzeugen
,” Ph.D. thesis, RWTH Aachen, Aachen, Germany.
13.
Lefebvre
,
A. H.
,
1989
,
Atomization and Sprays
,
Hemisphere Publishing Corporation
, New York.
14.
Abramovic
,
G. N.
,
1963
,
The Theory of Turbulent Jets
,
MIT Press
, Cambridge, MA.
15.
Schlick Atomizing Technologies
, 2017, “
Modulsystemreihe 940
,” Düsen Schlick GmbH, Coburg, Germany.
16.
Continental Emitec GmbH
,
2017
, “
Strukturierte Folien
,” Continental Emitec GmbH, Lohmar, Germany.
17.
Fischer
,
G.
,
Geith
,
J.
,
Klaptke
,
T. M.
, and
Krumm
,
B.
,
2002
, “
Synthesis, Properties and Dimerization Study of Isocyanic Acid
,”
Z. Fr Naturforsch. B
,
57
(
1
), pp.
19
24
.
18.
Lui
,
H.
,
2000
,
Science and Engineering of Droplets: Fundamentals and Applications
,
Noyes Publications
, Park Ridge, NJ.
19.
Opfer
,
L.
,
Weickgennant
,
C.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2012
, “
Breakup of Complex Liquid Drops and Jets
,”
Tenth Spray Workshop
, Berlin, May 21–22.
20.
Wang
,
W.-N.
,
Purwanto
,
A.
,
Wuled Lenggoro
,
I.
,
Okuyama
,
K.
,
Chang
,
H.
, and
Jang
,
H. D.
,
2008
, “
Investigation on the Correlations Between Droplet and Particle Size Distribution in Ultrasonic Spray Pyrolysis
,”
Ind. Eng. Chem. Res.
,
47
(
5
), pp.
1650
1659
.
21.
Gel'fand
,
B. E.
,
Gubin
,
S. A.
, and
Kogarko
,
S. M.
,
1974
, “
Various Forms of Drop Fractionation in Shock Waves and Their Special Characteristics
,”
J. Eng. Phys.
,
27
(
1
), pp.
877
882
.
You do not currently have access to this content.