Nowadays, the operative range limit of compressors is still a key aspect of the research into turbomachinery. In particular, the study of the mass flow rate lower limit represents a significant factor in order to predict and avoid the inception of critical working conditions and instabilities such as stall and surge. The identification of these instabilities and typical precursors of these two phenomena can imply many advantages, in both stationary and aeronautic applications, such as avoiding the loss of production (in industry) and efficiency of systems and reducing the maintenance and repairing cost. Many approaches can be adopted to achieve this target, but one of the most fascinating is the vibro-acoustic analysis of the compressor response during operation. At the Engineering Department of the University of Ferrara, a test bench, dedicated to the study of the performance of an aeronautic turboshaft engine multistage compressor, has been equipped with a high frequency data acquisition system. A set of triaxle accelerometers and microphones, suitable for capturing broad-band vibration and acoustic phenomena, were installed in strategic positions along the compressor and the test rig. A great amount of vibro-acoustic data were first processed through an innovative data analysis technique, and then correlated to the thermodynamic data recorded. Subsequently, the precursor signals of surge were detected and identified demonstrating the reliability of the methodology used for studying compressor instabilities. The experimental data and results offer a valid alternative way of analyzing and detecting unstable compressor behavior characteristics by means of nonintrusive measurements.

References

References
1.
Marshall
,
D. F.
, and
Sorokes
,
J. M.
,
2000
, “
A Review of Aerodynamically Induced Forces Acting on Centrifugal Compressors, and Resulting Vibration Characteristics of Rotors
,”
29th Turbomachinery Symposium
, Houston, TX, Sept. 18–21, pp. 263–280.
2.
Tryfonidis
,
M.
,
Etchevers
,
O.
,
Paduano
,
J. D.
,
Epstein
,
A. H.
, and
Hendricks
,
G. J.
,
1994
, “
Pre-Stall Behavior of Several High-Speed Compressors
,”
ASME
Paper No. 94-GT-387.
3.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Brun
,
K.
,
Simons
,
S.
, and
Kurz
,
R.
,
2017
, “
Measurement and Prediction of Centrifugal Compressor Axial Forces During Surge—Part II: Dynamic Surge Model
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
) p.
012602
.
4.
Cumpsty
,
N. A.
,
1989
,
Compressor Aerodynamics
,
Longman Scientific and Technical
, Harlow, UK.
5.
Meher-Homji
,
C. B.
, and
Gabriles
,
G.
,
1998
, “
Gas Turbine Blade Failures—Causes, Avoidance, and Troubleshooting
,”
27th Turbomachinery Symposium
, Houston, TX, Sept. 22–24, pp. 129–180.
6.
Petry
,
N.
,
Benra
,
F. K.
, and
Koenig
,
S.
,
2010
, “
Experimental Study of Acoustic Resonances in the Side Cavities of a High-Pressure Centrifugal Compressor Excited by Rotor/Stator Interaction
,”
ASME
Paper No. GT2010-22054.
7.
Vahdati
,
M.
,
Simpson
,
G.
, and
Imregun
,
M.
,
2008
, “
Unsteady Flow and Aeroelasticity Behavior of Aeroengine Core Compressors During Rotating Stall and Surge
,”
ASME J. Turbomach.
,
130
(
3
), p.
031017
.
8.
Schoenenborn
,
H.
, and
Breuer
,
T.
,
2012
, “
Aeroelasticity at Reversed Flow Conditions—Part II: Application to Compressor Surge
,”
ASME J. Turbomach.
,
134
(
6
), p.
061031
.
9.
Boyce
,
M. P.
,
2003
,
Centrifugal Compressors: A Basic Guide
,
PennWell Books
, Tulsa, OK.
10.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2017
, “
Experimental Investigation of Stall and Surge in a Multistage Compressor
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022605
.
11.
McDougall
,
N. M.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
1990
, “
Stall Inception in Axial Compressors
,”
ASME J. Turbomach.
,
112
(
1
), pp.
116
125
.
12.
Day
,
I. J.
,
1993
, “
Stall Inception in Axial Flow Compressors
,”
ASME J. Turbomach.
,
115
(
1
), pp.
1
9
.
13.
Escuret
,
J. F.
, and
Garnier
,
V.
,
1995
, “
Stall Inception Measurements in a High-Speed Multi-Stage Compressor
,”
ASME
Paper No. 95-GT-174.
14.
Duc Vo
,
H.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
,
2008
, “
Criteria for Spike Initiated Rotating Stall
,”
ASME J. Turbomach.
,
130
(
1
), p.
011023
.
15.
Day
,
I. J.
,
2016
, “
Stall, Surge, and 75 Years of Research
,”
ASME J. Turbomach.
,
138
(
1
), p.
011001
.
16.
Li
,
C.
,
Xu
,
S.
, and
Hu
,
Z.
,
2015
, “
Experimental Study of Surge and Rotating Stall Occurring in High-Speed Multistage Axial Compressor
,”
Procedia Eng.
,
99
, pp.
1548
1560
.
17.
Gallus
,
H. E.
, and
Hoenen
,
H.
,
1986
, “
Experimental Investigations of Airfoil-and Endwall Boundary Layers in a Subsonic Compressor Stage
,”
ASME
Paper No. 86-GT-143.
18.
Hönen, H., and Gallus, H. E., 1993, “Monitoring of Aerodynamic Load and Detection of Stall in Multi Stage Axial Compressors,”
ASME
Paper No. 93-GT-020.
19.
Bright
,
M. M.
,
Qammar
,
H. K.
,
Weigl
,
H. J.
, and
Paduano
,
J. D.
,
1997
, “
Stall Precursor Identification in High-Speed Compressor Stages Using Chaotic Time Series Analysis Methods
,”
ASME J. Turbomach.
,
119
(
3
), pp.
491
500
.
20.
Dhingra
,
M.
,
Neumeier
,
Y.
,
Prasad
,
J. V. R.
, and
Shin
,
H.-W.
,
2003
, “
Stall and Surge Precursors in Axial Compressors
,”
AIAA
Paper No. 2003-4425.
21.
Inoue
,
M.
,
Kuroumaru
,
M.
,
Iwamoto
,
T.
, and
Ando
,
Y.
,
1991
, “
Detection of a Rotating Stall Precursor in Isolated Axial Flow Compressor Rotors
,”
ASME J. Turbomach.
,
113
(
2
), pp.
281
289
.
22.
Young
,
A.
,
Day
,
I.
, and
Pullan
,
G.
,
2012
, “
Stall Warning by Blade Pressure Signature Analysis
,”
ASME J. Turbomach.
,
135
(
1
), p.
011033
.
23.
Christensen
,
D.
,
Cantin
,
P.
,
Gutz
,
D.
,
Szucs
,
P. N.
,
Wadia
,
A. R.
,
Armor
,
J.
,
Dhingra
,
M.
,
Neumeier
,
Y.
, and
Prasad
,
J. V. R.
,
2008
, “
Development and Demonstration of a Stability Management System for Gas Turbine Engines
,”
ASME J. Turbomach.
,
130
(
3
), p.
031011
.
24.
Forbes
,
G. L.
, and
Randall
,
R. B.
,
2009
, “
Gas Turbine Casing Vibrations Under Blade Pressure Excitation
,” Failure Prevention: Implementation, Success Stories and Lessons Learned—Conference of the Society for Machinery Failure Prevention Technology (
MFPT
), Dayton, OH, Apr. 28–30, p.
34
.https://www.researchgate.net/publication/267852247_Gas_turbine_casing_vibrations_under_blade_pressure_excitation
25.
Forbes
,
G. L.
, and
Randall
,
R. B.
,
2008
, “
Separation of Excitation Forces From Simulated Gas Turbine Casing Response Measurements
,”
Seventh European Conference on Structural Dynamics
(EURODYN), Southampton, UK, July 7–9.
26.
Simmons
,
H. R.
,
Brun
,
K.
, and
Cheruvu
,
S.
,
2006
, “
Aerodynamic Instability Effects on Compressor Blade Failure: A Root Cause Failure Analysis
,”
ASME
Paper No. GT2006-91353.
27.
Lawless
,
P. B.
, and
Fleeter
,
S.
,
1995
, “
Rotating Stall Acoustic Signature in a Low-Speed Centrifugal Compressor—Part 1: Vaneless Diffuser
,”
ASME J. Turbomach.
,
117
(
1
), pp.
87
96
.
28.
Lawless
,
P. B.
, and
Fleeter
,
S.
,
1993
, “
Rotating Stall Acoustic Signature in a Low Speed Centrifugal Compressor—Part 2: Vaned Diffuser
,”
ASME
Paper No. 93-GT-254.
29.
Morini
,
M.
,
Pinelli
,
M.
, and
Venturini
,
M.
,
2007
, “
Acoustic and Vibrational Analyses on a Multi-Stage Compressor for Unstable Behavior Precursor Identification
,”
ASME
Paper No. GT2007-27040.
30.
Aretakis
,
N.
,
Mathioudakis
,
K.
,
Kefalakis
,
M.
, and
Papailiou
,
K.
,
2004
, “
Turbocharger Unstable Operation Diagnosis Using Vibroacoustic Measurements
,”
ASME J. Eng. Gas Turbines Power
,
126
(
4
), pp.
840
847
.
31.
Aretakis
,
N.
, and
Mathioudakis
,
K.
,
1996
, “
Radial Compressor Fault Identification Using Dynamic Measurement Data
,”
ASME
Paper No. 96-GT-102.
32.
Aretakis
,
N.
, and
Mathioudakis
,
K.
,
1998
, “
Classification of Radial Compressor Faults Using Pattern-Recognition Techniques
,”
Control Eng. Pract.
,
6
(
10
), pp.
1217
1223
.
33.
D'Elia
,
G.
,
Cocconcelli
,
M.
,
Mucchi
,
E.
, and
Dalpiaz
,
G.
,
2016
, “
Combining Blind Separation and Cyclostationary Techniques for Monitoring Distributed Wear in Gearbox Rolling Bearings
,”
J. Mech. Eng. Sci.
, 231(6), pp. 1113–1128.
34.
Gardner
,
W. A.
,
1986
, “
The Spectral Correlation Theory of Cyclostationary Time-Series
,”
Signal Process.
,
11
(
3
), pp.
13
36
.
35.
Antoni
,
J.
,
2009
, “
Cyclostationarity by Examples
,”
Mech. Syst. Signal Process.
,
23
(4), pp.
987
1036
.
36.
Spakovszky
,
Z. S.
,
2004
, “
Backwards Rotating Stall Waves in Centrifugal Compressors.
,”
ASME J. Turbomach.
,
126
(
1
), pp.
1
12
.
37.
Pullan
,
G.
,
Young
,
A. M.
,
Day
,
I. J.
,
Greitzer
,
E. M.
, and
Spakovszky
,
Z. S.
,
2015
, “
Origins and Structure of Spike-Type Rotating Stall
,”
ASME J. Turbomach.
,
137
(
5
), p.
051007
.
38.
Munari
,
E.
,
Morini
,
M.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
Experimental Investigation and Modeling of Surge in a Multistage Compressor
,”
Energy Procedia
,
105
, pp.
1751
1756
.
You do not currently have access to this content.