Over the last years, global concerns about energy security and climate change have resulted in many efforts focusing on the potential utilization of nonpetroleum-based, i.e., bioderived, fuels. In this context, n-butanol has recently received high attention because it can be produced sustainably. A comprehensive knowledge about its combustion properties is inevitable to ensure an efficient and smart use of n-butanol if selected as a future energy carrier. In the present work, two major combustion characteristics, here laminar flame speeds applying the cone-angle method and ignition delay times applying the shock tube technique, have been studied, experimentally, and by modeling exploiting detailed chemical kinetic reaction models, at ambient and elevated pressures. The in-house reaction model was constructed applying the reaction model generation (RMG)-method. A linear transformation method recently developed, linTM, was exploited to generate a reduced reaction model needed for an efficient, comprehensive parametric study of the combustion behavior of n-butanol-hydrocarbon mixtures. All experimental data were found to agree with the model predictions of the in-house reaction model, for all temperatures, pressures, and fuel-air ratios. On the other hand, calculations using reaction models from the open literature mostly overpredict the measured ignition delay times by about a factor of two. The results are compared to those of ethanol, with ignition delay times very similar and laminar flame speeds of n-butanol slightly lower, at atmospheric pressure.

References

References
1.
Sarathy
,
S. M.
,
Oßwald
,
P.
,
Hansen
,
N.
, and
Kohse-Höinghaus
,
K.
,
2014
, “
Alcohol Combustion Chemistry
,”
Prog. Energy Combust. Sci.
,
44
, pp.
40
102
.
2.
Köhler
,
M.
,
Kathrotia
,
T.
,
Oßwald
,
P.
,
Fischer-Tammer
,
M. L.
,
Moshammer
,
K.
, and
Riedel
,
U.
,
2015
, “
1-, 2- and 3-Pentanol Combustion in Laminar Hydrogen Flames—A Comparative Experimental and Modeling Study
,”
Combust. Flame
,
162
(
9
), pp.
3197
3209
.
3.
Tao
,
L.
,
Aden
,
A.
,
He
,
X.
,
Tan
,
E. C. D.
,
Zhang
,
M.
,
Zigler
,
B. T.
, and
McCormick
,
R. L.
,
2013
, “
Techno-Economic Analysis and Life-Cycle Assessment of Cellulosic Iso-Butanol and Comparison With Cellulosic Ethanol and n-Butanol
,”
Biofuels, Bioprod. Biorefin.
,
8
(
1
), pp.
30
48
.
4.
Braun-Unkhoff
,
M.
,
Hansen
,
N.
,
Methling
,
T.
,
Moshammer
,
K.
, and
Yang
,
B.
,
2017
, “
The Influence of Iso-Butanol Addition to the Chemistry of Premixed 1,3-Butadiene Flames
,”
Proc. Combust. Inst.
,
36
(
1
), pp.
1311
1319
.
5.
Hansen
,
N.
,
Braun-Unkhoff
,
M.
,
Kathrotia
,
T.
,
Lucassen
,
A.
, and
Yang
,
B.
,
2015
, “
Understanding the Reaction Pathways in Premixed Flames Fueled by Blends of 1,3-Butadiene and n-Butanol
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
771
778
.
6.
Ratcliff
,
A.
,
Luecke
,
J.
,
Williams
,
A.
,
Christensen
,
E.
,
Yanowitz
,
J.
,
Reek
,
A.
, and
McCormick
,
R. L.
,
2013
, “
Impact of Higher Alcohols Blended in Gasoline on Light-Duty Vehicle Exhaust Emissions
,”
Environ. Sci. Technol.
,
47
(
23
), pp.
13865
13872
.
7.
Böhm
,
H.
, and
Braun-Unkhoff
,
M.
,
2008
, “
Numerical Study on the Effect of Oxygenated Blending Compounds Soot Formation in Shock Tubes
,”
Combust. Flame
,
153
(
1–2
), pp.
84
96
.
8.
ASTM International,
2013
, “
Standard Specification for Butanol for Blending With Gasoline for Use as Automotive Spark-Ignition Engine Fuel
,” ASTM International, Washington, DC, Standard No.
ASTM D7862-13
.https://www.astm.org/DATABASE.CART/HISTORICAL/D7862-13.htm
9.
Braun-Unkhoff
,
M.
,
Dembowski
,
J.
,
Herzler
,
J.
,
Karle
,
J.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2014
, “
Alternative Fuels Based on Biomass: An Experimental and Modeling Study of Ethanol Co-Firing to Natural Gas
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091503
.
10.
Herzler
,
J.
,
Herbst
,
J.
,
Kick
,
T.
,
Naumann
,
C.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2012
, “
Alternative Fuels Based on Biomass: An Investigation on Combustion Properties of Product Gases
,”
ASME J. Eng. Gas Turbines Power
,
135
(
3
), p.
031401
.
11.
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2013
, “
A Chemical-Kinetic Investigation of Combustion Properties of Alternative Fuels—A Step Towards a More Efficient Power Generation
,”
ASME
Paper No. GT2013-94994.
12.
Hohloch
,
M.
,
Widenhorn
,
A.
,
Lebküchner
,
D.
,
Panne
,
T.
, and
Aigner
,
M.
,
2008
, “
Micro Gas Turbine Test Rig for Hybrid Power Plant Application
,”
ASME
Paper No. GT2008-50443.
13.
Veloo
,
P. S.
,
Wang
,
Y. L.
,
Egolfopoulos
,
F. N.
, and
Westbrook
,
C. K.
,
2010
, “
A Comparative Experimental and Computational Study of Methanol, Ethanol, and n-Butanol Flames
,”
Combust. Flame
,
157
(
10
), pp.
1989
2004
.
14.
Sarathy
,
S. M.
,
Thomson
,
M. J.
,
Togbé
,
C.
,
Dagaut
,
P.
,
Halter
,
F.
, and
Mounaim-Rousselle
,
C.
,
2009
, “
An Experimental and Kinetic Modeling Study of n-Butanol Combustion
,”
Combust. Flame
,
156
(
4
), pp.
852
864
.
15.
Liu
,
W.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2011
, “
Non-Premixed Ignition, Laminar Flame Propagation, and Mechanism Reduction of n-Butanol, Iso-Butanol, and Methyl Butanoate
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
995
1002
.
16.
Wu
,
F.
, and
Law
,
C. K.
,
2013
, “
An Experimental and Mechanistic Study on the Laminar Flame Speed, Markstein Length and Flame Chemistry of the Butanol Isomers
,”
Combust. Flame
,
160
(
12
), pp.
2744
2756
.
17.
Beeckmann
,
J.
,
Cai
,
L.
, and
Pitsch
,
H.
,
2014
, “
Experimental Investigation of the Laminar Burning Velocities of Methanol, Ethanol, n-Propanol, and n-Butanol at High Pressure
,”
Fuel
,
117
(
A
), pp.
340
350
.
18.
Knorsch
,
T.
,
Zackel
,
A.
,
Mamaikin
,
D.
,
Zigan
,
L.
, and
Wensing
,
M.
,
2014
, “
Comparison of Different Gasoline Alternative Fuels in Terms of Laminar Burning Velocity at Increased Gas Temperatures and Exhaust Gas Recirculation Rates
,”
Energy Fuels
,
28
(
2
), pp.
1446
1452
.
19.
Broustail
,
G.
,
Seers
,
P.
,
Halter
,
F.
,
Moréac
,
G.
, and
Mounaim-Rousselle
,
C.
,
2011
, “
Experimental Determination of Laminar Burning Velocity for Butanol and Ethanol Iso-Octane Blends
,”
Fuel
,
90
(
1
), pp.
1
6
.
20.
Li
,
Q.
,
Hu
,
E.
,
Cheng
,
Y.
, and
Huang
,
Z.
,
2013
, “
Measurements of Laminar Flame Speeds and Flame Instability Analysis of 2-Methyl-1-Butanol–Air Mixtures
,”
Fuel
,
112
, pp.
263
271
.
21.
Gu
,
X.
,
Huang
,
Z. L.
, and
Tang
,
C.
,
2009
, “
Measurements of Laminar Burning Velocities and Markstein Lengths of n-Butanol−Air Premixed Mixtures at Elevated Temperatures and Pressures
,”
Energy Fuels
,
23
(
10
), pp.
4900
4907
.
22.
Broustail
,
G.
,
Halter
,
F.
,
Seers
,
P.
,
Moréac
,
G.
, and
Mounaim-Rousselle
,
C.
,
2013
, “
Experimental Determination of Laminar Burning Velocity for Butanol/Iso-Octane and Ethanol/Iso-Octane Blends for Different Initial Pressures
,”
Fuel
,
106
, pp.
310
317
.
23.
Gu
,
X.
,
Huang
,
Z.
,
Wu
,
S.
, and
Li
,
Q.
,
2010
, “
Laminar Burning Velocities and Flame Instabilities of Butanol Isomers-Air Mixtures
,”
Combust. Flame
,
157
(
12
), pp.
2318
2325
.
24.
Zhu
,
Y.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2014
, “
1-Butanol Ignition Delay Times at Low Temperatures: An Application of the Constrained-Reaction-Volume Strategy
,”
Combust. Flame
,
161
(
3
), pp.
634
643
.
25.
Heufer
,
K. A.
,
Fernandes
,
R. X.
,
Olivier
,
H.
,
Beeckmann
,
J.
,
Röhl
,
O.
, and
Peters
,
N.
,
2011
, “
Shock Tube Investigations of Ignition Delays of n-Butanol at Elevated Pressures Between 770 and 1250 K
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
359
366
.
26.
Vranckx
,
S.
,
Heufer
,
K. A.
,
Lee
,
C.
,
Olivier
,
H.
,
Schill
,
L.
,
Kopp
,
W. A.
,
Leonhard
,
K.
,
Taatjes
,
C. A.
, and
Fernandes
,
R. X.
,
2011
, “
Role of Peroxy Chemistry in the High-Pressure Ignition of n-Butanol—Experiments and Detailed Kinetic Modelling
,”
Combust. Flame
,
158
(
8
), pp.
1444
1455
.
27.
Stranic
,
I.
,
Chase
,
D. P.
,
Harmon
,
J. T.
,
Yang
,
S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2012
, “
Shock Tube Measurements of Ignition Delay Times for the Butanol Isomers
,”
Combust. Flame
,
159
(
2
), pp.
516
527
.
28.
Noorani
,
K. E.
,
Akih-Kumgeh
,
B.
, and
Bergthorson
,
J. M.
,
2010
, “
Comparative High Temperature Shock Tube Ignition of C1–C4 Primary Alcohols
,”
Energy Fuels
,
24
(
11
), pp.
5834
5843
.
29.
Zhang
,
J.
,
Pan
,
L.
,
Gong
,
J.
,
Huang
,
Z.
, and
Law
,
C. K.
,
2013
, “
A Shock Tube and Kinetic Modeling Study of n-Butanal Oxidation
,”
Combust. Flame
,
160
(
9
), pp.
1541
1549
.
30.
Black
,
G.
,
Curran
,
H. J.
,
Pichon
,
S.
,
Simmie
,
J. M.
, and
Zhukov
,
V.
,
2010
, “
Bio-Butanol: Combustion Properties and Detailed Chemical Kinetic Model
,”
Combust. Flame
,
157
(
2
), pp.
363
373
.
31.
Moss
,
J. T.
,
Berkowitz
,
A. M.
,
Oehlschlaeger
,
M. A.
,
Biet
,
J.
,
Warth
,
V.
,
Glaude
,
P.-A.
, and
Battin-Leclerc
,
F.
,
2008
, “
An Experimental and Kinetic Modeling Study of the Oxidation of the Four Isomers of Butanol
,”
J. Phys. Chem. A
,
112
(
43
), pp.
10843
10855
.
32.
POLIMI, HT-mech,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2014
, “
The Creck Modeling Group
,” CRECK Modeling, Milan, Italy, accessed Nov. 18, 2016, http://creckmodeling.chem.polimi.it/index.php/menu-kinetics/menu-kinetics-detailed-mechanisms/menu-kinetics-prf-pah-alcohols-ethers-mechanism
33.
Sarathy
,
S. M.
,
Vranckx
,
S.
,
Yasunaga
,
K.
,
Mehl
,
M.
,
Oßwald
,
P.
,
Metcalfe
,
W. K.
,
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Kohse-Höinghaus
,
K.
, and
Fernandes
,
R. X.
,
2012
, “
A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers
,”
Combust. Flame
,
159
(
6
), pp.
2028
2055
.
34.
Frassoldati
,
A.
,
Grana
,
R.
,
Faravelli
,
T.
,
Ranzi
,
E.
,
Oßwald
,
P.
, and
Kohse-Höinghaus
,
K.
,
2012
, “
Detailed Kinetic Modeling of the Combustion of the Four Butanol Isomers in Premixed Low-Pressure Flames
,”
Combust. Flame
,
159
(
7
), pp.
2295
2311
.
35.
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2010
, “
Kinetic Modeling of the Oxidation of Ethanol and Gasoline Surrogate Mixtures
,”
Combust. Sci. Technol.
,
182
(
4–6
), pp.
653
667
.
36.
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Niemann
,
U.
,
Ranzi
,
E.
,
Seiser
,
R.
, and
Seshadri
,
K.
,
2010
, “
An Experimental and Kinetic Modeling Study of n-Propanol and Iso-Propanol Combustion
,”
Combust. Flame
,
157
(1), pp.
2
16
.
37.
Goldaniga
,
A.
,
Faravelli
,
T.
,
Ranzi
,
E.
,
Dagaut
,
P.
, and
Cathonnet
,
M.
,
1998
, “
Oxidation of Oxygenated Octane Improvers: MTBE, ETBE, DIPE, and TAME
,”
Proc. Combust. Inst.
,
27
(
1
), pp.
353
360
.
38.
Goodwin
,
D. G.
,
Moffat
,
H. K.
, and
Speth
,
R. L.
,
2016
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, Version 2.2.1
,” Zenodo, Geneva, Switzerland, accessed Apr. 9, 2018, https://zenodo.org/record/45206#.Wstl52e6a44
39.
Kee
,
R. J.
,
Dixon-Lewis
,
G.
,
Warnatz
,
J.
,
Coltrin
,
M. E.
, and
Miller
,
J. A.
,
1986
, “
The Chemkin Transport Database
,” Sandia National Laboratories, Livermore, CA, Report No. SAND86-8246.
40.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1987
, “
CHEMKIN: The Chemkin Thermodynamic Database
,” Sandia National Laboratories, Livermore, CA, Report No. SAND87-8215.
41.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1989
, “
Chemkin II: A FORTRAN Chemical Kinetics Package for the Analysis of Gas Phase Chemical Kinetics
,” Sandia Laboratories, Livermore, CA, Report No. SAND89-8009B.
42.
Herzler
,
J.
, and
Naumann
,
C.
,
2008
, “
Shock Tube Study of the Ignition of Lean CO/H2 Fuel Blends at Intermediate Temperatures and High Pressure
,”
Combust. Sci. Technol.
,
180
(
10–11
), pp.
2015
2028
.
43.
Green
,
W. H.
,
Allen
,
J. W.
,
Beat
,
A.
,
Buesser
,
R.
,
Ashcraft
,
W.
,
Beran
,
G. J.
,
Class
,
C. A.
,
Gao
,
C.
,
Goldsmith
,
C. F.
,
Harper
,
M. R.
,
Jalan
,
A.
,
Keceli
,
M.
,
Magoon
,
G. R.
,
Matheu
,
D. M.
,
Merchant
,
S. S.
,
Mo
,
J. D.
,
Petway
,
S.
,
Raman
,
S.
,
Sharma
,
S.
,
Song
,
J.
,
Suleymanov
,
Y.
,
Geem
,
K. M. V.
,
Wen
,
J.
,
West
,
R. H.
,
Wong
,
A.
,
Wong
,
H. W.
,
Yelvington
,
P. E.
,
Yee
,
N.
, and
Yu
,
J.
,
2013
, “
RMG-Reaction Mechanism Generator v4.0.1
,” RMG, Cambridge, MA, accessed Apr. 9, 2018, http://rmg.sourceforge.net
44.
Slavinskaya
,
N.
,
Riedel
,
U.
,
Saibov
,
E.
,
Herzler
,
J.
, and
Naumann
,
C.
,
2014
, “
Kinetic Surrogate Model for GTL Kerosene
,”
AIAA
Paper No. 2014-0126.
45.
Methling
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2016
, “
A Novel Linear Transformation Model for the Analysis and Optimisation of Chemical Kinetics
,”
Combust. Theory Modell.
,
21
(
3
), pp.
503
528
.
46.
Herzler
,
J.
, and
Naumann
,
C.
,
2009
, “
Shock-Tube Study of the Ignition of Methane/Ethane/Hydrogen Mixtures With Hydrogen Contents From 0 to 100% at Different Pressures
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
213
220
.
47.
Kick
,
T.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
, and
Riedel
,
U.
,
2011
, “
An Experimental and Modeling Study of Laminar Flame Speeds of Alternative Aviation Fuels
,”
ASME
Paper No. GT2011-45606.
48.
Kick
,
T.
,
Herbst
,
J.
,
Kathrotia
,
T.
,
Marquetand
,
J.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2012
, “
An Experimental and Modeling Study of Burning Velocities of Possible Future Synthetic Jet Fuels
,”
Energy
,
43
(
1
), pp.
111
123
.
49.
Mzé Ahmed
,
A.
,
Dagaut
,
P.
,
Hadj-Ali
,
K.
,
Dayma
,
G.
,
Kick
,
T.
,
Herbst
,
J.
,
Kathrotia
,
T.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2012
, “
Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: Experimental and Chemical Kinetic Modeling Study
,”
Energy Fuels
,
26
(
10
), pp.
6070
6079
.
50.
Dagaut
,
P.
,
Karsenty
,
F.
,
Dayma
,
G.
,
Diévart
,
P.
,
Hadj-Ali
,
K.
, and
Mzé-Ahmed
,
A.
,
2013
, “
Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) Jet Fuel
,”
Combust. Flame
,
161
(
3
), pp.
835
847
.
51.
Andrews
,
G. E.
, and
Bradley
,
D.
,
1972
, “
Determination of Burning Velocities: A Critical Review
,”
Combust. Flame
,
18
(
1
), pp.
133
153
.
52.
Eberius
,
H.
, and
Kick
,
T.
,
1992
, “
Stabilization of Premixed, Conical Methane Flames at High Pressure
,”
Ber. Bunsen-Ges. Phys. Chem.
,
96
(
10
), pp.
1416
1419
.
You do not currently have access to this content.