This research investigated the combustion process of an AVL Model LEF/Volvo 5312 single cylinder engine configured to simulate the operation of a heavy-duty spark ignition (SI) natural gas (NG) engine operated on stoichiometric mixture. The factors affecting the combustion process that were examined include intake pressure, spark timing (ST), and the addition of diluents including nitrogen (N2) and carbon dioxide (CO2) to the NG to simulate low British thermal unit (BTU) gases. The mixing of diluents with NG is able to slow down the flame propagation speed, suppress the onset of knock, and allow the engine to operate on higher boost pressure for higher power output. The addition of CO2 was more effective than N2 in suppressing the onset of knock and slowing down the flame propagation speed due to its high heat capacity. Boosting intake pressure significantly increased the heat release rate (HRR) evaluated on J/°CA basis which represents the rate of mass of fuel burning. However, its impact on the normalized HRR evaluated on %/°CA basis, representing the flame propagation rate, was relatively mild. Boosting the intake pressure from 1.0 to 1.8 bar without adding diluents increased the peak HRR to 1.96 times of that observed at 1.0 bar. The increase was due to the burning of more fuel (about 1.8 times), and the 12.9% increase in the normalized HRR. The latter was due to the shortened combustion duration from 23.6 to 18.2 °CA, a 22.9% reduction. The presence of 40% CO2 or N2 in their mixture with NG increased the peak cylinder pressure (PCP) limited brake mean effective pressure (BMEP) from 17.2 to about 20.2 bar. The combustion process of a turbocharged SI NG engine can be approximated by referring to the HRR measured under a naturally aspirated condition. This makes it convenient for researchers to numerically simulate the combustion process and the onset of knock of turbocharged SI NG engines using combustion process data measured under naturally aspirated conditions as a reference.

References

References
1.
Vermet
,
D.
, and
Ferrone
,
C.
,
1994
, “A Review of Natural Gas Engine Development for the Fleet Operator,”
SAE
Paper No. 942312.
2.
Smith
,
W.
,
Timoney
,
D.
, and
Lynch
,
D.
,
1997
, “Emissions and Efficiency Comparison of Gasoline and LPG Fuels in a 1.4 Litre Passenger Car Engine,”
SAE
Paper No. 972970.
3.
Lee
,
K.
, and
Ryu
,
J.
,
2005
, “
An Experimental Study of the Flame Propagation and Combustion Characteristics of LPG Fuel
,”
Fuel
,
84
(9), pp.
1116
1127
.
4.
Narayanan
,
G.
, and
Bade Shrestha
,
S. O.
,
2006
, “The Performance of a Spark Ignition Engine Fueled With Landfill Gases,”
SAE
Paper No. 2006-01-3428.
5.
Boehman
,
L.
, and
Le Corre
,
O.
,
2008
, “
Combustion of Syngas in Internal Combustion Engines
,”
Combust. Sci. Technol.
,
180
(6), pp.
1193
1206
.
6.
Karim
,
G. A.
,
2003
, “
Hydrogen as a Spark Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
28
(5), pp.
569
577
.
7.
White
,
C. M.
,
Steeper
,
R. R.
, and
Lutz
,
A. E.
,
2006
, “
The Hydrogen-Fueled Internal Combustion Engine: A Technical Review
,”
Int. J. Hydrogen Energy
,
31
(10), pp.
1292
1305
.
8.
Verhelst
,
S.
,
Sierens
,
R.
, and
Verstraeten
,
S.
,
2006
, “A Critical Review of Experimental Research on Hydrogen Fueled SI Engines,”
SAE
Paper No. 2006-01-0430.
9.
Weaver
,
C.
,
1989
, “Natural Gas Vehicles—A Review of the State of the Art,”
SAE
Paper No. 892133.
10.
Korakianitis
,
T.
,
Namasivayam
,
A. M.
, and
Crooks
,
R. J.
,
2011
, “
Natural-Gas Fueled Spark-Ignition (SI) and Compression-Ignition Engine Performance and Emissions
,”
Prog. Energy Combust. Sci.
,
37
(1), pp.
89
112
.
11.
Cho
,
H. M.
, and
He
,
B.
,
2007
, “
Spark Ignition Natural Gas Engines—A Review
,”
Energy Convers. Manage.
,
48
(2), pp.
608
618
.
12.
Hajbabaei
,
M.
,
Karavalakis
,
G.
,
Johnson
,
K. C.
,
Lee
,
L.
, and
Durbin
,
T.
,
2013
, “
Impact of Natural Gas Fuel Composition on Criteria, Toxic, and Particle Emissions From Transit Buses Equipped With Lean Burn and Stoichiometric Engines
,”
Energy
,
62
(2), pp.
425
434
.
13.
Gladstein
,
C.
,
Couch
,
P.
,
Wake
,
M.
, and
Medlock
,
C.
,
2014
, “The Pathways to Near-Zero-Emission Natural Gas Heavy Duty Vehicles,” Gladstein, Neandross & Associates (GNA), Santa Monica, CA, http://www.gladstein.org/gna_whitepapers/zero-emission-catenary-hybrid-truck-market-study/
14.
Turner
,
S. H.
, and
Weaver
,
C. S.
,
1994
, “Dual-Fuel Natural Gas/Diesel Engines: Technology, Performance and Emissions,” GRI, Chicago, IL, GRI Report No. 94/0094.
15.
Karim
,
G. A.
,
2003
, “
Combustion in Gas Fueled Compression Ignition Engines of the Dual Fuel Type
,”
ASME J. Eng. Gas Turbines Power
,
125
(3), pp.
827
836
.
16.
Papagiannakis
,
R. G.
,
Rakopoulos
,
C. D.
,
Hountalas
,
D. T.
, and
Rakopoulos
,
D. C.
,
2010
, “
Emission Characteristics of High Speed, Dual Fuel, Compression Ignition Engine Operating in a Wide Range of Natural Gas/Diesel Fuel Proportions
,”
Fuel
,
89
(7), pp.
1397
1406
.
17.
May
,
I.
,
Pedrozo
,
V.
,
Zhao
,
H.
,
Cairns
,
A.
,
Whelan
,
S.
,
Wong
,
H.
, and
Bennicke
,
P.
,
2016
, “Characterization and Potential of Premixed Dual-Fuel Combustion in a Heavy Duty Natural Gas/Diesel Engine,”
SAE
Paper No. 2016-01-0790.
18.
Karim
,
G. A.
,
Liu
,
Z.
, and
Jones
,
W.
,
1993
, “Exhaust Emissions From Dual Fuel Engines at Light Load,”
SAE
Paper No. 932822.
19.
Gatts
,
T.
,
Liu
,
S.
,
Liew
,
C.
,
Ralston
,
B.
,
Bell
,
C.
, and
Li
,
H.
,
2012
, “
An Experimental Investigation of Incomplete Combustion of Gaseous Fuels of a Heavy-Duty Diesel Engine Supplemented With Hydrogen and Natural Gas
,”
Int. J. Hydrogen Energy
,
37
(9), pp.
7848
7859
.
20.
Malenshek
,
M.
, and
Olsen
,
D. B.
,
2009
, “
Methane Number Testing of Alternative Gaseous Fuels
,”
Fuel
,
88
(4), pp.
650
656
.
21.
Attar
,
A. A.
, and
Karim
,
G. A.
,
2003
, “
Knock Rating of Gaseous Fuels
,”
ASME J. Eng. Gas Turbines Power
,
25
(
2
), pp.
500
504
.
22.
Li
,
H.
, and
Karim
,
G. A.
,
2006
, “
Experimental Investigation of the Knock and Combustion Characteristics of CH4, H2, CO, and Some of Their Mixtures
,”
J. Power Energy
,
220
(
5
), pp.
459
471
.
23.
Li
,
H.
,
Karim
,
G. A.
, and
Sohrabi
,
A.
,
2003
, “Knock and Combustion Characteristics of CH4, CO, H2 and Their Binary Mixtures,”
SAE
Paper No. 2003-01-3088.
24.
Tennant
,
C. J.
,
Atkinson
,
R. J.
,
Traver
,
M. L.
,
Atkinson
,
C. M.
, and
Clark
,
N. N.
,
1995
, “Turbocharging a Bi-Fuel Engine for Performance Equivalent to Gasoline,”
SAE
Paper No. 942003.
25.
Wayne
,
W. S.
,
Clark
,
N.
, and
Atkinson
,
C. M.
,
1998
, “A Parametric Study of Knock Control Strategies for a Bi-Fuel Engine,”
SAE
Paper No. 980895.
26.
Vermiglio
,
E.
,
Jenkins
,
T.
,
Kieliszewski
,
M.
,
Lapetz
,
J.
,
Povinger
,
B.
,
Willey
,
R.
,
Herber
,
J.
,
Sahutske
,
K.
,
Blue
,
M.
, and
Clark
,
R.
,
1997
, “Ford's SULEV Dedicated Natural Gas Trucks,”
SAE
Paper No. 971662.
27.
Catania
,
A.
,
Misul
,
D.
,
Spessa
,
E.
, and
Martorana
,
G.
,
2000
, “Conversion of a Multivalve Gasoline Engine to Run on CNG,”
SAE
Paper No. 2000-01-0673.
28.
Catania
,
A.
,
Misul
,
D.
,
Spessa
,
E.
, and
Vassallo
,
A.
,
2004
, “Analysis of Combustion Parameters and Their Relation to Operating Variables and Exhaust Emissions in an Upgraded Multivalve Bi-Fuel CNG SI Engine,”
SAE
Paper No. 2004-01-0983.
29.
Kato
,
K.
,
Igarashi
,
K.
,
Masuda
,
M.
,
Otsubo
,
K.
,
Yasuda
,
A.
, and
Takeda
,
K.
,
1999
, “Development of Engine for Natural Gas Vehicle,”
SAE
Paper No. 1999-01-0574.
30.
Prati
,
M.
,
Mariani
,
A.
,
Torbati
,
R.
,
Unich
,
A.
,
Costagliola
,
M. A.
, and
Morrone
,
B.
,
2011
, “Emissions and Combustion Behavior of a Bi-Fuel Gasoline and Natural Gas Spark Ignition Engine,”
SAE
Paper No. 2011-24-0212.
31.
Manivannan
,
A.
,
Porai
,
P.
,
Chandrasekaran
,
S.
, and
Ramprabhu
,
R.
,
2003
, “Lean Burn Natural Gas Spark Ignition Engine—An Overview,”
SAE
Paper No. 2003-01-0638.
32.
Chiu
,
J.
,
Wegrzyn
,
J.
, and
Murphy
,
K.
,
2004
, “Low Emissions Class 8 Heavy-Duty On-Highway Natural Gas and Gasoline Engine,”
SAE
Paper No. 2004-01-2982.
33.
Einewall
,
P.
,
Tunestål
,
P.
, and
Johansson
,
B.
,
2005
, “Lean Burn Natural Gas Operation vs. Stoichiometric Operation With EGR and a Three Way Catalyst,”
SAE
Paper No. 2005-01-0250.
34.
Karavalakis
,
G.
,
Hajbabaei
,
M.
,
Durbin
,
T. D.
,
Johnson
,
K. C.
,
Zheng
,
Z.
, and
Miller
,
W. J.
,
2013
, “
The Effect of Natural Gas Composition on the Regulated Emissions, Gaseous Toxic Pollutants, and Ultrafine Particle Number Emissions From a Refuse Hauler Vehicle
,”
Energy
,
50
, pp.
280
291
.
35.
Bade Shrestha
,
S. O.
, and
Rodrigues
,
R.
,
2008
, “
Effects of Diluents on Knock Rating of Gaseous Fuels
,”
J. Power Energy
,
222
(6), pp.
587
597
.
36.
Yoon
,
S.
,
Collins
,
J.
,
Thiruvengadam
,
A.
,
Gautam
,
M.
,
Herner
,
J.
, and
Ayala
,
A.
,
2013
, “
Criteria Pollutant and Greenhouse Gas Emissions From CNG Transit Buses Equipped With Three-Way Catalysts Compared to Lean-Burn Engines and Oxidation Catalyst Technologies
,”
J. Air Waste Manage. Assoc.
,
63
(8), pp.
926
933
.
37.
Karavalakis
,
G.
,
Hajbabaei
,
M.
,
Jiang
,
Y.
,
Yang
,
J.
,
Johnson
,
K. C.
,
Cocker
,
D. R.
, and
Durbin
,
T. D.
,
2016
, “
Regulated, Greenhouse Gas, and Particulate Emissions From Lean-Burn and Stoichiometric Natural Gas Heavy-Duty Vehicles on Different Fuel Compositions
,”
Fuel
,
175
, pp.
146
156
.
38.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2011
,
Thermodynamics: An Engineering Approach
,
7th ed.
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.