In this study, new methodologies are introduced to analyze combustion instability in a lab-scale swirled combustor. First, with the help of radial basis function neural network (RBFNN), the flame describing function (FDF) is effectively modeled from a limited number of experimental data. This neural-network-based FDF method is able to generate more refined FDF data in an extended range. In addition, instead of a perforated plate with round holes, a slotted plate is utilized as a stabilization device. In this approach, the acoustic impedance of a slotted plate is modeled by the Dowling approach, and the dimensions of a slotted plate are optimized by simulated annealing (SA) algorithm to get the highest average absorption coefficient in a given frequency range. The present RBFNN-based FDF approach yields the reasonably good agreements with the measurements in terms of the limit-cycle velocity perturbation ratio and resonant frequency. It is also found that a slotted plate optimized by SA algorithm is quite effective to attenuate combustion instability. Numerical results obtained in this study confirm that these new methodologies are quite reliable and widely applicable for the analysis of combustion instability encountered in practical combustion systems.

References

References
1.
Salas
,
P.
,
2013
, “
Aspects Numeriques et Physiques des Instabilities Thermoacoustiques dans les Chambres de Combustion Anulaires
,” Ph.D. thesis, Uniersite Bordeaux, Bordeaux, France.
2.
Poinsot
,
T.
, and
Veynante
,
T.
,
2011
,
Theoretical and Numerical Combustion
,
3rd ed.
,
R. T. Edwards
,
London
.
3.
Laera
,
D.
,
Campa
,
G.
,
Camporeale
,
S. M.
,
Bertoloto
,
E.
,
Rizzo
,
S.
,
Bonzani
,
F.
, and
Ferrante
,
A.
,
2014
, “
Modelling of Thermoacoustic Combustion Instabilities Phenomena: Application to an Experimental Rig for Testing Full Scale Burners
,”
ASME
Paper No. GT 2014-25273.
4.
Laera
,
D.
,
Campa
,
G.
,
Camporeale
,
S. M.
,
Bertolotto
,
E.
,
Rizzo
,
S.
,
Bonzani
,
F.
,
Ferrante
,
A.
, and
Saponaro
,
A.
,
2014
, “
Modelling of Thermoacoustic Combustion Instabilities Phenomena: Application to an Experimental Test Rig
,”
Energy Procedia
,
45
, pp.
1392
1401
.
5.
Laera
,
D.
,
Gentile
,
A.
,
Camporeale
,
S. M.
,
Bertolotto
,
E.
,
Rofi
,
L.
, and
Bonzani
,
F.
,
2015
, “
Numerical and Experimental Investigation of Thermoacoustic Combustion Instability in a Longitudinal Combustion Chamber: Influence of the Geometry of the Plenum
,”
ASME
Paper No. GT2015-42322.
6.
Zhao
,
D.
,
Li
,
S.
, and
Zhao
,
H.
,
2016
, “
Entropy-Involved Energy Measure Study of Intrinsic Thermoacoustic Oscillations
,”
Appl. Energy
,
177
, pp.
570
578
.
7.
Wolf
,
P.
,
Staffelbach
,
G.
,
Gicquel
,
L. Y. M.
,
Muller
,
J. D.
, and
Poinsot
,
T.
,
2012
, “
Acoustic and Large Eddy Simulation Studies of Azimuthal Modes in Annular Combustion Chambers
,”
Combust. Flame
,
159
(
11
), pp.
3398
3413
.
8.
Silva
,
C. F.
,
Nicoud
,
F.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2013
, “
Combining a Helmholtz Solver With the Flame Describing Function to Assess Combustion Instability in a Premixed Swirled Combustor
,”
Combust. Flame
,
160
(
9
), pp.
1743
1754
.
9.
Boudy
,
F.
,
2012
, “
Nonlinear Dynamics and Control Analysis of Combustion Instabilities Based on the ‘Flame Describing Function’ (FDF)
,”
Ph.D. dissertation
, Ecole Centrale Paris, Paris, France.https://tel.archives-ouvertes.fr/tel-00870770/
10.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2008
, “
A Unified Framework for Nonlinear Combustion Instability Analysis Based on the Flame Describing Function
,”
J. Fluid Mech
,
615
, pp.
139
167
.
11.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2007
, “
Passive Control of Combustion Instabilities Involving Premixed Flames Anchored on Perforated Plates
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1283
1290
.
12.
Noiray
,
N.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2009
, “
A Method for Estimating the Noise Level of Unstable Combustion Based on the Flame Describing Function
,”
Int. J. Aeroacoust.
,
8
(
1
), pp.
157
176
.
13.
Boudy
,
F.
,
Durox
,
D.
,
Schuller
,
T.
,
Jomaas
,
G.
, and
Candel
,
S.
,
2011
, “
Describing Function Analysis of Limit Cycles in a Multiple Flame Combustor
,”
ASME J. Eng. Gas Turbines Power
,
133
(
6
), p.
061502
.
14.
Boudy
,
F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2013
, “
Analysis of Limit Cycles Sustained by Two Modes in the Flame Describing Function Framework
,”
C. R. Mec.
,
341
(
1–2
), pp.
181
190
.
15.
Boudy
,
F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Mode Triggering in a Multiple Flame Combustor
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1121
1128
.
16.
Boudy
,
F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Flame Describing Function Analysis of Galloping Limit Cycles Featuring Chaotic States in Premixed Combustors
,”
ASME
Paper No. GT2012-68998.
17.
Laera
,
D.
,
Campa
,
G.
, and
Camporeale
,
S. M.
,
2017
, “
A Finite Element Method for a Weakly Nonlinear Dynamic Analysis and Bifurcation Tracking of Thermo-Acoustic Instability in Longitudinal and Annular Combustors
,”
Appl. Energy
,
187
, pp.
216
227
.
18.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2011
, “
Nonlinear Combustion Instability Analysis Based on the Flame Describing Function Applied to Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
158
(
10
), pp.
1980
1991
.
19.
Palies
,
P.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candal
,
S.
,
2011
, “
The Combined Dynamics of Swirler and Turbulent Premixed Swirling Flames
,”
Combust. Flame
,
157
(9), pp.
1698
1717
.
20.
Scarpato
,
A.
,
2014
, “
Linear and Nonlinear Analysis of the Acoustic Response of Perforated Plates Traversed by a Bias Flow
,”
Ph.D. thesis
, Ecole Centrale Paris, Paris, France.https://hal.inria.fr/tel-01126834/
21.
Campa
,
G.
,
2012
, “
Prediction of the Thermoacoustic Combustion Instability in Gas Turbines
,”
Ph.D. dissertation
, Politecnico di Bari, Bari, Italy.https://www.researchgate.net/publication/235328588_Prediction_of_the_Thermoacoustic_Combustion_Instability_in_Gas_Turbines
22.
Li
,
S.
,
Li
,
Q.
,
Tang
,
L.
,
Yang
,
B.
,
Fu
,
J.
,
Clarke
,
C. A.
,
Jin
,
X.
,
Ji
,
C. Z.
, and
Zhao
,
H.
,
2016
, “
Theoretical and Experimental Demonstration of Minimizing Self-Excited Thermoacoustic Oscillations by Applying Anti-Sound Technique
,”
Appl. Energy
,
181
, pp.
399
407
.
23.
Li
,
X.
,
Zhao
,
D.
,
Yang
,
X.
,
Wen
,
H.
,
Jin
,
X.
,
Li
,
S.
,
Zhao
,
H.
,
Xie
,
C.
, and
Liu
,
H.
,
2016
, “
Transient Growth of Acoustical Energy Associated With Mitigating Thermoacoustic Oscillations
,”
Appl. Energy
,
169
, pp.
481
490
.
24.
Villamil
,
H. R.
,
2012
, “
Acoustic Properties of Microperforated Panels and Their Optimization by Simulated Annealing
,” Ph.D. dissertation, Universidad Politecnica de Madrid, Madrid, Spain.
25.
Maa
,
D. Y.
,
1975
, “
Theory and Design of Microperforated Panel Sound Absorbing Constructions
,”
Sci. Sin.
,
18
(1), pp.
55
71
.http://engine.scichina.com/publisher/scp/journal/Math%20A0/18/1/10.1360/ya1975-18-1-55?slug=full%20text
26.
Howe
,
M. S.
,
1998
,
Acoustics of Fluid-Structure Interactions
,
Cambridge University Press
,
Cambridge, UK
.
27.
Jing
,
X.
, and
Sun
,
X.
,
1999
, “
Experimental Investigations of Perforated Liners With Bias Flow
,”
J. Acoust. Soc. Am.
,
106
(
5
), pp.
2436
2441
.
28.
Jing
,
X.
, and
Sun
,
X.
,
2000
, “
Effect of Plate Thickness on Impedance of Perforated Plates With Bias Flow
,”
AIAA J.
,
38
(
9
), pp.
1573
1578
.
29.
Atalla
,
N.
, and
Sgard
,
F.
,
2007
, “
Modeling of Perforated Plates and Screens Using Rigid Frame Porous Models
,”
J. Sound Vib.
,
303
(
1–2
), pp.
195
208
.
30.
Hughes
,
I. J.
, and
Dowling
,
A. P.
,
1990
, “
The Absorption of Sound by Perforated Linings
,”
J. Fluid Mech.
,
218
(
1
), pp.
299
335
.
31.
Cummings
,
A.
, and
Eversman
,
W.
,
1983
, “
High Amplitude Acoustic Transmission Through Duct Terminations: Theory
,”
J. Sound Vib.
,
91
(
4
), pp.
503
518
.
32.
Cummings
,
A.
,
1986
, “
Transient and Multiple Frequency Sound Transmission Through Perforated Plates at High Amplitude
,”
J. Acoust. Soc. Am.
,
79
(
4
), pp.
942
951
.
33.
Yang
,
D.
, and
Morgans
,
A. S.
,
2016
, “
An Analytical Model for the Acoustic Impedance of Circular Holes of Finite Length
,”
23rd International Congress on Sound and Vibration
, Athens, Greece, July 10–14, Paper No.
T05.SS08
.https://www.iiav.org/archives_icsv_last/2016_icsv23/content/papers/papers/full_paper_650_20160519183735630.pdf
34.
Luong
,
T.
,
Howe
,
M. S.
, and
McGowan
,
R. S.
,
2005
, “
On the Rayleigh Conductivity of a Bias-Flow Aperture
,”
J. Fluids Struct.
,
21
(
8
), pp.
769
778
.
35.
Oh
,
S.
,
Shin
,
Y.
, and
Kim
,
Y.
,
2016
, “
Stabilization Effects of Perforated Plates on the Combustion Instability in a Lean Premixed Combustor
,”
Appl. Therm. Eng.
,
107
, pp.
508
515
.
36.
Maa
,
D. Y.
,
2000
, “
Theory of Microslit Absorbers
,”
Acta Acust.
,
25
, pp.
481
485
.
37.
Randeberg
,
R.
,
2000
, “
Perforated Panel Absorbers With Viscous Energy Dissipation Enhanced by Orifice Design
,”
Ph.D. dissertation
, Norwegian University of Science and Technology, Trondheim, Norwayhttps://brage.bibsys.no/xmlui/bitstream/handle/11250/249798/125365_FULLTEXT01.pdf.
38.
Dai
,
X.
,
Jing
,
X.
, and
Sun
,
X.
,
2014
, “
Discrete Vortex Model of a Helmholtz Resonator Subjected to High-Intensity Sound and Grazing Flow
,”
J. Sound Vib.
,
333
, pp.
2713
2727
.
39.
Dowling
,
A. P.
,
1992
, “
Sound Absorption by a Screen With a Regular Array of Slits
,”
J. Sound Vib.
,
156
(
3
), pp.
387
405
.
40.
Beale
,
M. H.
,
Hagan
,
M. T.
, and
Demuth
,
H. B.
,
2016
, “
MATLAB R2016b: Neural Network Toolbox: User's Guide
,” The MathWorks Inc., Natick, MA.
41.
Lee
,
K.
, and
Kim
,
K.
,
2011
, “
Surrogate Based Optimization of a Laidback Fan-Shaped Hole for Film-Cooling
,”
Int. J. Heat Fluid Flow
,
32
(
1
), pp.
226
238
.
42.
Lee
,
K.
, and
Kim
,
K.
,
2009
, “
Optimization of a Cylindrical Film Cooling Hole Using Surrogate Modeling
,”
Numer. Heat Transfer, Part A
,
55
(
4
), pp.
362
380
.
43.
Wang
,
C.
,
Zhang
,
J.
, and
Zhou
,
J.
,
2016
, “
Optimization of a Fan-Shaped Hole to Improve Film Cooling Performance by RBF Neural Network and Genetic Algorithm
,”
Aerosp. Sci. Tech.
,
58
, pp.
18
25
.
44.
Jaensch
,
S.
, and
Polifke
,
W.
,
2017
, “
On the Uncertainty Encountered When Modeling Self-Excited Thermoacoustic Oscillations With Artificial Neural Networks
,”
Int. J. Spray Combust. Dyn.
,
9
(
4
), pp.
367
379
.
45.
Blonbou
,
R.
,
Laverdant
,
A.
,
Zaleski
,
S.
, and
Kuentzmann
,
P.
,
2000
, “
Active Adaptive Combustion Control Using Neural Networks
,”
Combust. Sci. Technol.
,
156
(
1
), pp.
25
47
.
46.
Blonbou
,
R.
,
Laverdant
,
A.
,
Zaleski
,
S.
, and
Kuentzmann
,
P.
,
2000
, “
Active Control of Combustion Instabilities on a Rijke Tube Using Neural Networks
,”
Proc. Combust. Inst
,
28
(
1
), pp.
747
755
.
47.
Goffe
,
W. L.
,
Ferrier
,
G. D.
, and
Rogers
,
J.
,
1994
, “
Global Optimization of Statistical Functions With Simulated Annealing
,”
J. Econometrics
,
60
(
1–2
), pp.
65
99
.
48.
Levine
,
H.
, and
Schwinger
,
J.
,
1948
, “
On the Radiation of Sound From an Unflanged Circular Pipe
,”
J. Propul. Power
,
73
, pp.
383
406
.
49.
Rienstra
,
S.
, and
Hirschberg
,
A.
,
2017
, “
An Introduction to Acoustics
,”
Eindhoven University of Technology
, Eindhoven, The Netherlands.
50.
Kim
,
K. T.
, and
Santavicca
,
D. A.
,
2013
, “
Generalization of Turbulent Swirl Flame Transfer Functions in Gas Turbine Combustors
,”
Combust. Sci. Tech.
,
185
(
7
), pp.
999
1015
.
51.
Kim
,
K. T.
, and
Santavicca
,
D. A.
,
2013
, “
Interference Mechanisms of Acoustic/Convective Disturbances in a Swirl- Stabilized Lean-Premixed Combustor
,”
Combust. Flame
,
160
(
8
), pp.
1441
1457
.
You do not currently have access to this content.