Surrogates development is important to extensively investigate the combustion behavior of fuels. Development of comprehensive surrogates has been focusing on matching chemical and physical properties of their target fuel to mimic its atomization, evaporation, mixing, and auto-ignition behavior. More focus has been given to matching the derived cetane number (DCN) as a measure of the auto-ignition quality. In this investigation, we carried out experimental validation of a three-component surrogate for Sasol-Isoparaffinic Kerosene (IPK) in ignition quality tester (IQT) and in an actual diesel engine. The surrogate fuel is composed of three components (46% iso-cetane, 44% decalin, and 10% n-nonane on a volume basis). The IQT experiments were conducted as per ASTM D6890-10a. The engine experiments were conducted at 1500 rpm, two engine loads, and two injection timings. Analysis of ignition delay (ID), peak pressure, peak rate of heat release (RHR), and other combustion phasing parameters showed a closer match in the IQT than in the diesel engine. Comparison between the surrogate combustion behavior in the diesel engine and IQT revealed that matching the DCN of the surrogate to its respective target fuel did not result in the same negative temperature coefficient (NTC) profile—which led to unmatched combustion characteristics in the high temperature combustion (HTC) regimes, despite the same auto-ignition and low temperature combustion (LTC) profiles. Moreover, a comparison between the combustion behaviors of the two fuels in the IQT is not consistent with the comparison in the diesel engine, which suggests that the surrogate validation in a single-cylinder diesel engine should be part of the surrogate development methodology, particularly for low ignition quality fuels.

References

References
1.
Stucker
,
J. P.
,
Schank
,
J. F.
, and
Dombey-Moore
,
B.
,
1994
, “
Assessment of DoD Fuel Standardization Policies
,” National Defense Research Institute, Fort Belvoir, VA.
2.
Bentley
,
R. W.
,
2002
, “
Global Oil & Gas Depletion: An Overview
,”
Energy Policy
,
30
(
3
), pp.
189
205
.
3.
Sorrell
,
S.
,
Speirs
,
J.
,
Bentley
,
R.
,
Brandt
,
A.
, and
Miller
,
R.
,
2010
, “
Global Oil Depletion: A Review of the Evidence
,”
Energy Policy
,
38
(
9
), pp.
5290
5295
.
4.
Muzzell
,
P. A.
, and
Johnson, N.
,
2011
, “
Alternative Fuels for Use in DoD/Army Tactical Ground Systems
,” Army Tank Automotive Research Development and Engineering Center, Warren, MI, Report No. TARDEC-21501.
5.
Brakora
,
J.
,
Ra
,
Y.
, and
Reitz
,
R. D.
,
2011
, “
Combustion Model for Biodiesel-Fueled Engine Simulations Using Realistic Chemistry and Physical Properties
,”
SAE Int. J. Engines
,
4
(
1
), pp.
931
947
.
6.
Vasu
,
S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2008
, “
Jet Fuel Ignition Delay Times: Shock Tube Experiments Over Wide Conditions and Surrogate Model Predictions
,”
Combust. Flame
,
152
(
1–2
), pp.
125
143
.
7.
Lenhert
,
D.
,
2004
, “
The Oxidation of JP-8 and Its Surrogates in the Low and Intermediate Temperature Regime
,”
Ph. D. dissertation
, Drexel University, Philadelphia, PA.https://idea.library.drexel.edu/islandora/object/idea%3A384/datastream/OBJ/download/The_oxidation_of_JP-8_and_its_surrogates_in_the_low_and_intermediate_temperature_regime.pdf
8.
Agosta
,
A.
,
2002
, “
Development of a Chemical Surrogate for JP-8 Aviation Fuel in Pressurized Flow Reactor
,”
Master thesis
, Drexel University, Philadelphia, PA.https://pdfs.semanticscholar.org/f0b9/8a8d245ab30373ea62f03e8eab5c8cf354ea.pdf
9.
Huber
,
M. L.
,
Lemmon
,
E. W.
, and
Bruno
,
T. J.
,
2010
, “
Surrogate Mixture Models for the Thermophysical Properties of Aviation Fuel Jet-A
,”
Energy Fuels
,
24
(
6
), pp.
3565
3571
.
10.
Violi
,
A.
,
Yan
,
S.
,
Eddings
,
E. G.
,
Granata
,
S.
,
Faravaelli
,
T.
, and
Ranzi
,
E.
,
2002
, “
Experimental Formulation and Kinetic Model for JP-8 Surrogate Mixtures
,”
Combust. Sci. Technol.
,
174
(
11–12
), pp.
399
417
.
11.
Dagaut
,
P.
, and
Cathonnet
,
M.
,
2006
, “
The Ignition, Oxidation, and Combustion of Kerosene: A Review of Experimental and Kinetic Modeling
,”
Prog. Energy Combust. Sci.
,
32
(
1
), pp.
48
92
.
12.
Cemansky
,
N. P.
, and
Miller
,
D. L.
,
2006
, “
The Low Temperature Oxidation Chemistry of JP-8 and Its Surrogates at High Pressure
,” Drexel University, Philadelphia, PA, Accession No.
ADA459259
.https://classic.ntis.gov/assets/pdf/st-on-cd/ADA459259.pdf
13.
Dooley
,
S.
,
Won
,
S. H.
,
Chaos
,
M.
,
Heyne
,
J.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Sung
,
C.-J.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Santoro
,
R. J.
, and
Litzinger
,
T. A.
,
2010
, “
A Jet Fuel Surrogate Formulated by Real Fuel Properties
,”
Combust. Flame
,
157
(
12
), pp.
2333
2339
.
14.
Dooley
,
S.
,
Won
,
S. H.
,
Heyne
,
J.
,
Farouk
,
T. I.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Kumar
,
K.
,
Hui
,
X.
,
Sung
,
C.-J.
,
Wang
,
H.
,
Oehlschlaeger
,
M. A.
,
Iyer
,
V.
,
Iyer
,
S.
,
Litzinger
,
T. A.
,
Santoro
,
R. J.
,
Malewicki
,
T.
, and
Brezinsky
,
K.
,
2012
, “
The Experimental Evaluation of a Methodology for Surrogate Fuel Formulation to Emulate Gas Phase Combustion Kinetic Phenomena
,”
Combust. Flame
,
159
(
4
), pp.
1444
1466
.
15.
Dooley
,
S.
,
Dryer
,
F.
,
Won
,
S. H.
, and
Farouk
,
T.
,
2013
, “
Reduced Kinetic Models for the Combustion of Jet Propulsion Fuels
,”
AIAA
Paper No. 2013-0158.https://arc.aiaa.org/doi/abs/10.2514/6.2013-158
16.
Won
,
S.
,
Santner
,
J.
,
Dryer
,
F.
, and
Ju
,
Y.
,
2013
, “
Comparative Evaluation of Global Combustion Properties of Alternative Jet Fuels
,”
AIAA
Paper No. 2013-0156. https://arc.aiaa.org/doi/abs/10.2514/6.2013-156
17.
Dryer
,
F. L.
,
Ju
,
Y.
,
Brezinsky
,
K.
,
Santoro
,
R. J.
,
Litzinger
,
T. A.
, and
Sung
,
C. J.
,
2012
, “
Generation of Comprehensive Surrogate Kinetic Models and Validation Databases for Simulating Large Molecular Weight Hydrocarbon Fuels
,” Princeton University, Princeton, NJ.
18.
Malewicki
,
T.
,
Gudiyella
,
S.
, and
Brezinsky
,
K.
,
2013
, “
Experimental and Modeling Study on the Oxidation of Jet A and the n-Dodecane/Iso-Octane/n-Propylbenzene/1, 3, 5-Trimethylbenzene Surrogate Fuel
,”
Combust. Flame
,
160
(
1
), pp.
17
30
.
19.
Honnet
,
S.
,
Seshadri
,
K.
,
Niemann
,
U.
, and
Peters
,
N.
,
2009
, “
A Surrogate Fuel for Kerosene
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
485
492
.
20.
Humer
,
S.
,
Seiser
,
R.
, and
Seshadri
,
K.
,
2011
, “
Experimental Investigation of Combustion of Jet Fuels and Surrogates in Nonpremixed Flows
,”
J. Propul. Power
,
27
(
4
), pp.
847
855
.
21.
Bruno
,
T. J.
, and
Smith
,
B. L.
,
2010
, “
Evaluation of the Physicochemical Authenticity of Aviation Kerosene Surrogate Mixtures—Part 1: Analysis of Volatility With the Advanced Distillation Curve
,”
Energy Fuels
,
24
(
8
), pp.
4266
4276
.
22.
Bruno
,
T. J.
, and
Huber
,
M. L.
,
2010
, “
Evaluation of the Physicochemical Authenticity of Aviation Kerosene Surrogate Mixtures—Part 2: Analysis and Prediction of Thermophysical Properties
,”
Energy Fuels
,
24
(
8
), pp.
4277
4284
.
23.
Mueller
,
C. J.
,
Cannella
,
W. J.
,
Bruno
,
T. J.
,
Bunting
,
B.
,
Dettman
,
H. D.
,
Franz
,
J. A.
, and
Wright
,
K.
,
2012
, “
Methodology for Formulating Diesel Surrogate Fuels With Accurate Compositional, Ignition-Quality, and Volatility Characteristics
,”
Energy Fuels
,
26
(
6
), pp.
3284
3303
.
24.
Agosta
,
A.
,
2002
, “
Development of a Chemical Surrogate for JP-8 Aviation Fuel Using a Pressurized Flow Reactor
,”
Master's thesis
, Drexel University, Philadelphia, PA.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.122.2537&rep=rep1&type=pdf
25.
Lenhert
,
D. B.
,
2004
, “
The Oxidation of JP-8 and Its Surrogates in the Low and Intermediate Temperature Regime
,”
Ph.D. dissertation
, Drexel University, Philadelphia, PA.https://idea.library.drexel.edu/islandora/object/idea%3A384
26.
Shrestha
,
A.
,
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N.
, and
Schihl, P.
,
2014
, “
Development of JP-8 Surrogates and Their Validation Using Ignition Quality Tester
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp. 337–351.
27.
Shrestha
,
A.
,
Joshi
,
U.
,
Zheng
,
Z.
,
Badawy
,
T.
,
Henein
,
N.
,
Sattler
,
E.
, and
Schihl
,
P.
,
2014
, “
Experimental Validation and Combustion Modeling of a JP-8 Surrogate in a Single Cylinder Diesel Engine
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp. 94–105.
28.
Udayachalam
,
K.
,
Trivedi
,
M.
,
Zheng
,
Z.
,
Shrestha
,
A.
, and
Henein
,
N.
,
2017
, “
Development of a Surrogate for SASOL IPK and Its Validation in Ignition Quality Tester
,”
SAE
Paper No. 2017-01-0263.
29.
Zhong
,
L. R.
,
2006
, “
A Control Strategy for Cold Starting of a Diesel Engine With Common Rail Fuel Injection System
,” Ph.D. dissertation, Wayne State University, Detroit, MI.
30.
Heywood
,
J. B.
,
1988
, Internal Combustion Engine Fundamentals, McGraw-Hill, Cambridge, MA, pp.
715
716
.
31.
Jayakumar
,
C.
,
Zheng
,
Z.
,
Joshi
,
U.
,
Bryzik
,
W.
,
Henein
,
N.
, and
Sattler
,
E.
,
2012
, “
Effect of Intake Pressure and Temperature on the Auto-Ignition of Fuels With Different Cetane Number and Volatility
,”
SAE
Paper No. 2012-01-1317.
32.
Joshi
,
U.
,
Zheng
,
Z.
,
Shrestha
,
A.
,
Henein
,
N.
, and
Sattler
,
E.
,
2015
, “
An Investigation on Sensitivity of Ignition Delay and Activation Energy in Diesel Combustion
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091506
.
33.
Miles
,
P. C.
,
2000
, “
The Influence on Swirl on HSDI Diesel Combustion at Moderate Speed and Load
,”
SAE
Paper No. 2000-01-1829.
34.
ASTM
,
2010
, “
Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber
,” American Society for Testing and Materials, West Conshohocken, PA, Standard No.
D6890-10a
.https://www.astm.org/Standards/D6890.htm
35.
Wortman
,
B.
,
Richardson
,
W. R.
,
Gee
,
G.
,
Williams
,
M.
,
Pearson
,
T.
, and
Bensley
,
F.
, 2014, “
CSSBB Primer
,” 4th ed., Quality Council of Indiana, West Terre Haute, IN.
You do not currently have access to this content.