Solid particle ingestion is one of the principal degradation mechanisms in the compressor and turbine sections of gas turbines. In particular, in industrial applications, the microparticles not captured by the air filtration system can cause deposits on blading and, consequently, result in a decrease in compressor performance. In the literature, there are some studies related to the fouling phenomena in transonic compressors, but in industrial applications (heavy-duty compressors, pump stations, etc.), the subsonic compressors are widespread. It is highly important for the manufacturer to gather information about the fouling phenomenon related to this type of compressor. This paper presents three-dimensional (3D) numerical simulations of the microparticle ingestion (0.15–1.50 μm) in a multistage (i.e., eight stage) subsonic axial compressor, carried out by means of a commercial computational fluid dynamic (CFD) code. Particles of this size can follow the main air flow with relatively little slip, while being impacted by flow turbulence. It is of great interest to the industry to determine which zones of the compressor blades are impacted by these small particles. Particle trajectory simulations use a stochastic Lagrangian tracking method that solves the equations of motion separately from the continuous phase. The adopted computational strategy allows the evaluation of particle deposition in a multistage axial compressor thanks to the use of a mixing plane approach to model the rotor/stator interaction. The compressor numerical model and the discrete phase model are set up and validated against the experimental and numerical data available in the literature. The number of particles and sizes is specified in order to perform a quantitative analysis of the particle impacts on the blade surface. The blade zones affected by particle impacts and the kinematic characteristics (velocity and angle) of the impact of micrometric and submicrometric particles with the blade surface are shown. Both blade zones affected by particle impact and deposition are analyzed. The particle deposition is established by using the quantity called sticking probability (SP), adopted from the literature. The SP links the kinematic characteristics of particle impact on the blade with the fouling phenomenon. The results show that microparticles tend to follow the flow by impacting on the compressor blades at full span. The suction side (SS) of the blade is only affected by the impacts of the smallest particles. Particular fluid dynamic phenomena, such as corner separations and clearance vortices, strongly influence the impact location of the particles. The impact and deposition trends decrease according to the stages. The front stages appear more affected by particle impact and deposition than the rear ones.

References

References
1.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of ASME Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.
2.
Kurz
,
R.
,
Brun
,
K.
,
Meher-Homji
,
C.
, and
Moore
,
J.
,
2012
, “
Gas Turbine Performance and Maintenance
,”
41st Turbomachinery Symposium
, Houston, TX, Sept. 24–27.
3.
Wilcox
,
M.
,
Baldwin
,
R.
,
Garcia-Hernandez
,
A.
, and
Brun
,
K.
,
2010
,
Guideline for Gas Turbine Inlet Air Filtration Systems
,
Gas Machinery Research Council Southwest Research Institute
,
San Antonio, TX
.
4.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2010
, “
Influence of Blade Deterioration on Compressor and Turbine Performance
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032401
.
5.
Rodríguez
,
C.
,
Sánchez
,
D.
,
Chacartegui
,
R.
,
Muñoz
,
A.
, and
Martínez
,
G. S.
,
2013
, “Compressor Fouling: A Comparison of Different Fault Distributions Using a ‘Stage-Stacking’ Technique,”
ASME
Paper No. GT2013-94010.
6.
Tarabrin
,
A. P.
,
Schurovsky
,
V. A.
,
Bodrov
,
A. I.
, and
Stalder
,
J.-P.
,
1998
, “Influence of Axial Compressor Fouling on Gas Turbine Unit Performance Based on Different Schemes and With Different Initial Parameters,”
ASME
Paper No. 98-GT-416.
7.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.
8.
Suzuki
,
M.
,
Inaba
,
K.
, and
Yamamoto
,
M.
,
2008
, “
Numerical Simulation of Sand Erosion Phenomena in Rotor/Stator Interaction of Compressor
,”
J. Therm. Sci.
,
17
(
2
), pp.
125
133
.
9.
Ghenaiet
,
A.
,
2012
, “
Study of Sand Particle Trajectories and Erosion Into the First Compression Stage of a Turbofan
,”
ASME J. Turbomach.
,
134
(
5
), p.
051025
.
10.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Suman
,
A.
,
2016
, “
An Innovative Method for the Evaluation of Particle Deposition Accounting for the Rotor/Stator Interaction
,”
ASME J. Eng. Gas Turbines Power
,
139
(
5
), p.
052401
.
11.
Saxena
,
S.
,
Jothiprasad
,
G.
,
Bourassa
,
C.
, and
Pritchard
,
B.
,
2016
, “
Numerical Simulation of Particulates in Multistage Axial Compressors
,”
ASME J. Turbomach.
,
139
(
3
), p.
031013
.
12.
ANSYS CFX,
2015
, “Release 16.2, User Manual,” ANSYS Inc., Canonsburg, PA.
13.
Cornelius
,
C.
,
Biesinger
,
T.
,
Galpin
,
P.
, and
Braune
,
A.
,
2013
, “
Experimental and Computational Analysis of a Multistage Axial Compressor Including Stall Prediction by Steady and Transient CFD Methods
,”
ASME J. Turbomach.
,
136
(
6
), p.
061013
.
14.
Schiller
,
L.
, and
Naumann
,
A.
,
1933
, “
A Drag Coefficient Correlation
,”
Z. Des Vereines Deutscher Ingenieure
,
77
(
12
), pp.
318
320
.
15.
Saffman
,
P. G.
,
1965
, “
The Lift on a Small Sphere in a Slow Shear Flow
,”
J. Fluid Mech.
,
22
(
2
), pp.
385
400
.
16.
Saffman
,
P. G.
,
1968
, “
The Lift on a Small Sphere in a Slow Shear Flow—Corrigendum
,”
J. Fluid Mech.
,
31
(
3
), p.
624
.
17.
Mei
,
R.
, and
Klausner
,
J. F.
,
1994
, “
Shear Lift Force on Spherical Bubbles
,”
Int. J. Heat Fluid Flow
,
15
(
1
), pp.
62
65
.
18.
Gosman
,
A. D.
, and
Ioannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.
19.
Forder
,
A.
,
Thew
,
M.
, and
Harrison
,
D. A.
,
1998
, “
Numerical Investigation of Solid Particle Erosion Experienced Within Oilfield Control Valves
,”
Wear
,
216
(
2
), pp.
184
193
.
20.
Zohdi
,
T. I.
,
2005
, “
Modeling and Direct Simulation of Near-Field Granular Flows
,”
Int. J. Solids Struct.
,
42
(
2
), pp.
539
564
.
21.
Tian
,
L.
, and
Ahmadi
,
G.
,
2007
, “
Particle Deposition in Turbulent Duct Flows-Comparisons of Different Model Predictions
,”
J. Aerosol Sci.
,
38
(
4
), pp.
377
397
.
22.
Zagnoli
,
D.
,
Prenter
,
R.
,
Ameri
,
A.
, and
Bons
,
J. P.
,
2015
, “Numerical Study of Deposition in a Full Turbine Stage Using Steady and Unsteady Methods,”
ASME
Paper No. GT2015-43613.
23.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012603
.
24.
Kurz
,
R.
,
Musgrove
,
G.
, and
Brun
,
K.
,
2016
, “
Experimental Evaluation of Compressor Blade Fouling
,”
ASME J. Eng. Gas Turbines Power
,
139
(
3
), p.
032601
.
25.
Tabakoff
,
W.
,
Named
,
A.
, and
Metwally
,
M.
,
1990
, “Effect of Particle Size Distribution on Particle Dynamics and Blade Erosion in Axial Flow Turbines,”
ASME J. Eng. Gas Turbines Power
,
113
(
4
), pp.
607
615
.
26.
Fottner
,
L.
,
1989
, “
Review on Turbomachinery Blading Design Problems
,”
AGARD Lecture Ser.
,
167
(1), p. 13.
27.
Poppe
,
T.
,
Blum
,
J.
, and
Henning
,
T.
,
2000
, “
Analogous Experiments on the Stickiness of Micron-Sized Preplanetary Dust
,”
Astrophys. J.
,
533
(
1
), pp.
454
471
.
28.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2014
, “
Quantitative Computational Fluid Dynamic Analyses of Particle Deposition on a Transonic Axial Compressor Blade—Part II: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p.
021010
.
29.
Zaba
,
T.
, and
Lombardi
,
P.
,
1984
, “Experience in the Operation of Air Filters in Gas Turbine Installations,”
ASME
Paper No. 84-GT-39.
30.
Haskell
,
R. W.
,
1989
, “Gas Turbine Compressor Operating Environment and Material Evaluation,”
ASME
Paper No. 89-GT-42.
31.
Mezheritsky
,
A. D.
, and
Sudarev
,
A. V.
,
1990
, “The Mechanism of Fouling and the Cleaning Technique in Application to Flow Parts of the Power Generation Plant Compressors,”
ASME
Paper No. 90-GT-103.
You do not currently have access to this content.