The Dry-Low-NOx (DLN) Micromix combustion technology has been developed as low emission combustion principle for industrial gas turbines fueled with hydrogen or syngas. The combustion process is based on the phenomenon of jet-in-crossflow-mixing (JICF). Fuel is injected perpendicular into the air-cross-flow and burned in a multitude of miniaturized, diffusion-like flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. In the Micromix research approach, computational fluid dynamics (CFD) analyses are validated toward experimental results. The combination of numerical and experimental methods allows an efficient design and optimization of DLN Micromix combustors concerning combustion stability and low NOx emissions. The paper presents a comparison of several numerical combustion models for hydrogen and hydrogen-rich syngas. They differ in the complexity of the underlying reaction mechanism and the associated computational effort. The performance of a hybrid eddy-break-up (EBU) model with a one-step global reaction is compared to a complex chemistry model and a flamelet generated manifolds (FGM) model, both using detailed reaction schemes for hydrogen or syngas combustion. Validation of numerical results is based on exhaust gas compositions available from experimental investigation on DLN Micromix combustors. The conducted evaluation confirms that the applied detailed combustion mechanisms are able to predict the general physics of the DLN-Micromix combustion process accurately. The FGM method proved to be generally suitable to reduce the computational effort while maintaining the accuracy of detailed chemistry.

References

References
1.
Shum
,
F.
, and
Ziemann
,
J.
,
1996
, “Potential Use of Hydrogen in Air Propulsion, Euro-Québec Hydro-Hydrogen Pilot Project (EQHHPP),” European Union, Brussels, Belgium, Contract No. 4541-91-11 EL ISP PC.
2.
Westenberger
,
A.
,
2003
, “Liquid Hydrogen Fuelled Aircraft—System Analysis,” CRYOPLANE—Final Technical Report, Airbus Deutschland GmbH, Hamburg, Germany, Report No. GRD1-1999-10014.
3.
Moriarty
,
P.
, and
Honnery
,
D.
,
2009
, “
Hydrogen's Role in an Uncertain Energy Future
,”
Int. J. Hydrogen Energy
,
34
(
1
), pp.
31
39
.
4.
Funke
,
H.
,
Börner
,
S.
,
Keinz
,
J.
,
Hendrick
,
P.
, and
Recker
,
E.
,
2012
, “
Low NOx Hydrogen Combustion Chamber for Industrial Gas Turbine Applications
,”
14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-14)
, Honolulu, HI, Feb. 27–Mar. 2, Paper No. ISROMAC14-1190.
5.
Funke
,
H. H.-W.
,
Börner
,
S.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Kroniger
,
D.
,
Kitajima
,
J.
,
Kazari
,
M.
, and
Horikawa
,
A.
,
2012
, “Numerical and Experimental Characterization of Low NOx Micromix Combustion Principle for Industrial Hydrogen Gas Turbine Applications,”
ASME
Paper No. GT2012-69421.
6.
Funke
,
H.
,
Keinz
,
J.
,
Kusterer
,
K.
,
Haj Ayed
,
A.
,
Kazari
,
M.
,
Kitajima
,
J.
,
Horikawa
,
A.
, and
Okada
,
K.
,
2015
, “Experimental and Numerical Study on Optimizing the DLN Micromix Hydrogen Combustion Principle for Industrial Gas Turbine Applications,”
ASME
Paper No. GT2015-42043.
7.
van Oijen
,
J. A.
,
2002
, “Flamelet-Generated Manifolds: Development and Application to Premixed Laminar Flames,”
Ph.D. thesis
, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.https://pure.tue.nl/ws/files/3058253/200213035.pdf
8.
Arrhenius
,
S.
,
1889
, “
Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren
,”
Z. Phys. Chem.
,
4
, pp.
226
248
.
9.
CD-adapco
,
2015
, “STAR-CCM+ Documentation Version 10.02,” CD-adapco, Melville, NY.
10.
Fernandez-Galisteo
,
D.
,
Sanchez
,
A. L.
,
Linan
,
A.
, and
Williams
,
F. A.
,
2009
, “
One-Step Reduced Kinetics for Lean Hydrogen-Air Deflagration
,”
Combust. Flame
,
156
(
5
), pp.
985
996
.
11.
Lindemann
,
F. A.
,
Arrhenius
,
S.
,
Langmuir
,
I.
,
Dhar
,
N. R.
,
Perrin
,
J.
, and
Lewis
,
W. C. Mcc.
,
1922
, “
Discussion on the Radiation Rheory of Chemical Action
,”
Trans. Faraday Soc.
,
17
, pp.
598
606
.
12.
Gilbert
,
R. G.
,
Luther
,
K.
, and
Troe
,
J.
,
1983
, “
Theory of Thermal Unimolecular Reactions in the Fall-off Range. II. Weak Collision Rate Constants
,”
Ber. Bunsenges. Phys. Chem.
,
87
(
2
), pp.
169
177
.
13.
Magnusson
,
B. F.
,
2005
, “
The Eddy Dissipation Concept—A Bridge Between Science and Technology
,”
ECCOMAS Thematic Conference on Computational Combustion
, Lisbon, Portugal, June 21–24.
14.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
, and
Dryer
,
F. L.
,
2004
, “
An Updated Comprehensive Kinetic Model of Hydrogen Combustion
,”
Int. J. Chem. Kinetics
,
36
(
10
), pp.
566
575
.
15.
Hawkes
,
E. R.
,
Sankaran
,
R.
,
Sutherland
,
J. C.
, and
Chen
,
J. H.
,
2007
, “
Scalar Mixing in Direct Numerical Simulations of Temporally Evolving Plane Jet Flames With Skeletal CO/H2 Kinetics
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1633
1640
.
16.
Frassoldati
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2007
, “
The Ignition, Combustion and Flame Structure of Carbon Monoxide/Hydrogen Mixtures. Note 1: Detailed Kinetic Modeling of Syngas Combustion Also in Presence of Nitrogen Compounds
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3471
3485
.
17.
CD-adapco
,
2015
, “DARS Basic Manual—Book 7 Library Generation—DARS Version 2.10,” CD-adapco, Melville, NY.
18.
Najafi-Yazdi
,
A.
,
Cuenot
,
B.
, and
Mongeau
,
L.
,
2012
, “
Systematic Definition of Progress Variables and Intrinsically Low-Dimensional, Flamelet Generated Manifolds for Chemistry Tabulation
,”
Combust. Flame
,
159
(
3
), pp.
1197
1204
.
19.
Ihme
,
M.
,
Shunn
,
L.
, and
Zhang
,
J.
,
2012
, “
Regularization of Reaction Progress Variable for Application to Flamelet-Based Combustion Models
,”
J. Comput. Phys.
,
231
(
23
), pp.
7715
7721
.
20.
Mével
,
R.
,
Javoy
,
S.
,
Coudoro
,
K.
,
Dupré
,
G.
, and
Paillard
,
C.-E.
,
2012
, “
Assessment of H2-CH4-Air Mixtures Oxidation Kinetic Models Used in Combustion
,”
Int. J. Hydrogen Energy
,
37
(
1
), pp.
698
714
.
You do not currently have access to this content.