In-cylinder pressure-based combustion descriptors have been widely used for engine combustion control and spark advance scheduling. Although these combustion descriptors have been extensively studied for gasoline-fueled spark ignition (SI) engines, adequate literature is not available on use of alternative fuels in SI engines. In an attempt to partially address this gap, present work focuses on spark advance modeling of hydrogen-fueled SI engines based on combustion descriptors. In this study, two such combustion descriptors, namely, position of the pressure peak (PPP) and 50% mass fraction burned (MFB) have been used to evaluate the efficiency of the combustion. With a view to achieve this objective, numerical simulation of engine processes was carried out in computational fluid dynamics (CFD) software ANSYS fluent and simulation data were subsequently validated with the experimental results. In view of typical combustion characteristics of hydrogen fuel, spark advance plays a very crucial role in the system development. Based on these numerical simulation results, it was observed that the empirical rules used for combustion descriptors (PPP and 50% MFB) for the best spark advance in conventional gasoline fueled engines do not hold good for hydrogen engines. This work suggests revised empirical rules as: PPP is 8–9 deg after piston top dead center (ATDC) and position of 50% MFB is 0–1 deg ATDC for the maximum brake torque (MBT) conditions. This range may vary slightly with engine design but remains almost constant for a particular engine configuration. Furthermore, using these empirical rules, spark advance timings for the engine are presented for its working range.

References

References
1.
Das
,
L. M.
,
1990
, “
Hydrogen Engines: A View of the Past and a Look Into the Future
,”
Int. J. Hydrogen Energy
,
15
(
6
), pp.
425
443
.
2.
Ghazi
,
A. K.
,
2003
, “
Hydrogen as a Spark Ignition Engine Fuel
,”
Int. J. Hydrogen Energy
,
28
(
5
), pp.
569
577
.
3.
Winter
,
C. J.
,
2009
, “
Hydrogen Energy—Abundant, Efficient, Clean: A Debate Over the Energy-System-of-Change
,”
Int. J. Hydrogen Energy
,
34
(
14
), pp.
S1
S52
.
4.
National Hydrogen Energy Board,
2006
, “National Hydrogen Energy Road Map: Pathway for Transition to Hydrogen Energy for India, National Hydrogen Energy Board, Ministry of New and Renewable Energy,” Government of India, New Delhi, India,
Report
.http://mnre.gov.in/file-manager/UserFiles/abridged-nherm.pdf
5.
Verhelst
,
S.
, and
Wallner
,
T.
,
2009
, “
Hydrogen-Fueled Internal Combustion Engines
,”
Prog. Energy Combust. Sci.
,
35
(6), pp.
490
527
.
6.
Heywood
,
J. B.
,
1998
,
Internal Combustion Engine Fundamentals
(McGraw-Hill Series in Mechanical Engineering),
McGraw-Hill
, New York.
7.
Sher
,
E.
, and
Hacohen
,
Y.
,
1987
, “
On the Modeling of a Si 4-Stroke Cycle Engine Fueled With Hydrogen-Enriched Gasoline
,”
Int. J. Hydrogen Energy
,
12
(
11
), pp.
773
781
.
8.
Das
,
L. M.
,
Rohit
,
G.
, and
Gupta
,
P. K.
,
2000
, “
Performance Evaluation of a Hydrogen-Fuelled Spark Ignition Engine Using Electronically Controlled Solenoid-Actuated Injection System
,”
Int. J. Hydrogen Energy
,
25
(
6
), pp.
569
579
.
9.
Salimi
,
F.
,
Shamekhi
,
A. H.
, and
Pourkhesalian
,
A. M.
,
2009
, “
Role of Mixture Richness, Spark and Valve Timing in Hydrogen-Fuelled Engine Performance and Emission
,”
Int. J. Hydrogen Energy
,
34
(
9
), pp.
3922
3929
.
10.
Shi
,
W. B.
,
Yu
,
X. M.
, and
Sun
,
P.
,
2015
, “
Effect of Spark Timing on Performance of a Hydrogen Gasoline Engine
,”
Appl. Mech. Mater.
,
713
, pp.
239
242
.
11.
Shudo
,
T.
,
Nakajima
,
Y.
, and
Futakuchi
,
T.
,
2000
, “
Thermal Efficiency Analysis in a Hydrogen Premixed Combustion Engine
,”
JSAE Rev.
,
21
(2), pp.
177
182
.
12.
Das
,
L. M.
, and
Mathur
,
R.
,
1993
, “
Exhaust Gas Recirculation for NOx Control in a Multicylinder Hydrogen-Supplemented S.I. Engine
,”
Int. J. Hydrogen Energy
,
18
(
12
), pp.
1013
1018
.
13.
Ferguson
,
C. R.
, and
Kirkpatrick
,
A. T.
,
2001
,
Internal Combustion Engines: Applied Thermosciences
,
2nd ed.
,
Wiley
, Hoboken, NJ.
14.
Subramanian
,
V.
,
Mallikarjuna
,
J. M.
, and
Ramesh
,
A.
,
2007
, “
Effect of Water Injection and Spark Timing on the Nitric Oxide Emission and Combustion Parameters of a Hydrogen Fuelled Spark Ignition Engine
,”
Int. J. Hydrogen Energy
,
32
(
9
), pp.
1159
1173
.
15.
Homan
,
H. S.
,
de Boer
,
P. C. T.
, and
Mclean
,
W. J.
,
1983
, “
The Effect of Fuel Injection on NOx Emission and Undesirable Combustion for Hydrogen-Fuelled Piston Engines
,”
Int. J. Hydrogen Energy
,
8
(
2
), pp.
131
146
.
16.
Al-Baghdadi
,
M. A. R. S.
,
2004
, “
Effect of Compression Ratio, Equivalence Ratio and Engine Speed on the Performance and Emission Characteristics of a Spark Ignition Engine Using Hydrogen as a Fuel
,”
Renewable Energy
,
29
(15), pp.
2245
2260
.
17.
Das
,
L. M.
,
2002
, “
Hydrogen Engine: Research and Development (R&D) Programmes in Indian Institute of Technology (IIT), Delhi
,”
Int. J. Hydrogen Energy
,
27
(9), pp.
953
965
.
18.
Eriksson
,
L.
,
1999
, “Spark Advance for Optimal Efficiency,”
SAE
Paper No. 1999-01-0548.
19.
Hubbard
,
M.
,
Dobson
,
P. D.
, and
Powell
,
J. D.
,
1976
, “
Closed Loop Control of Spark Advance Using a Cylinder Pressure Sensor
,”
ASME J. Dyn. Syst. Meas. Control
,
98
(
4
), pp.
414
420
.
20.
Eriksson
,
L.
,
1999
, “Spark Advance Modelling and Control,”
Ph.D. dissertation
, Linkoping University, Linkoping, Sweden.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.440.8497&rep=rep1&type=pdf
21.
Rassweiler
,
G. M.
, and
Withrow
,
L.
,
1980
, “Motion Pictures of Engine Flames Correlated With Pressure Cards,”
SAE
Paper No. 380139.
22.
Magnusson
,
J.
,
2007
, “
An Investigation of Maximum Brake Torque Timing Based on Ionization Current Feedback
,”
Master's thesis
, Linkoping University, Linkoping, Sweden.http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A23960&dswid=9906
23.
Michael
,
B.
,
1995
, “
Most Optimal Location of 50% Mass Fraction Burned and Automatic Knock Detection. Components for Automatic Optimization of SI-Engine Calibrations
,”
MTZ Worldwide
,
56
(
10
), pp.
632
638
.
24.
Beccari
,
A.
,
Beccari
,
S.
, and
Pipitone
,
E.
,
2009
, “
An Analytical Approach for the Evaluation of the Optimal Combustion Phase in Spark Ignition Engines
,”
ASME J. Eng. Gas Turbines Power
,
132
(
3
), p.
032802
.
25.
Yakhot
,
V.
,
Orszag
,
S. A.
,
Thangam
,
S.
,
Gatski
,
T. B.
, and
Speziale
,
C. G.
,
1992
, “
Development of Turbulence Models for Shear Flows by a Double Expansion Technique
,”
Phys. Fluids, A
,
4
(
7
), pp.
1510
1520
.
26.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k–ε Models
,”
Combust. Sci. Technol.
,
106
(
4
), pp.
267
295
.
27.
ANSYS,
2011
, “ANSYS Fluent 14.0, Theory Guide,” Ansys Inc., Canonsburg, PA.
28.
Jones
,
W. P.
, and
Whitelaw
,
J. H.
,
1982
, “
Calculation Methods for Reacting Turbulent Flows: A Review
,”
Combust. Flame
,
48
, pp.
1
26
.
29.
Zimont
,
V. L.
, and
Lipatnikov
,
A. N.
,
1995
, “
A Numerical Model of Premixed Turbulent Combustion of Gases
,”
Chem. Phys. Rep.
,
14
(7), pp.
993
1025
.https://www.researchgate.net/publication/312978033_A_numerical_model_of_premixed_turbulent_combustion_of_gases
30.
Fagelson
,
J. J.
,
McLean
,
W. J.
, and
Boer
,
P. C. T. D.
,
1978
, “
Performance and NOx Emissions of Spark-Ignited Combustion Engines Using Alternative Fuels—Quasi One-Dimensional Modelling—I: Hydrogen Fueled Engines
,”
Combust. Sci. Technol.
,
18
, pp.
47
57
.
31.
Tabaczynski
,
R. J.
,
Trinker
,
F. H.
, and
Shannon
,
B. A. S.
,
1980
, “
Further Refinement and Validation of a Turbulent Flame Propagation Model for Spark-Ignition Engines
,”
Combust. Flame
,
39
(2), pp.
111
121
.
32.
Gülder
,
Ö. L.
,
1991
, “
Turbulent Premixed Flame Propagation Models for Different Combustion Regimes
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
743
750
.
33.
Peters
,
N.
,
2000
,
Turbulent Combustion
,
Cambridge University Press
,
Cambridge, UK
.
34.
Zimont
,
V. L.
,
1979
, “
Theory of Turbulent Combustion of a Homogeneous Fuel Mixture at High Reynolds Number
,”
Combust. Explos. Shock Waves
,
15
(3), pp.
305
311
.
35.
Verhelst
,
S.
,
Woolley
,
R.
,
Lawes
,
M.
, and
Sierens
,
R.
,
2005
, “
Laminar and Unstable Burning Velocities and Markstein Lengths of Hydrogen–Air Mixtures at Engine-Like Conditions
,”
Proc. Combust. Inst.
,
30
(1), pp.
209
216
.
36.
Verhelst
,
S.
,
2005
, “
A Study of the Combustion in Hydrogen-Fuelled Internal Combustion Engine
,”
Ph.D. thesis
, Ghent University, Ghent, Belgium.https://biblio.ugent.be/publication/471572/file/1876963.pdf
37.
Verhelst
,
S.
, and
Sierens
,
R.
,
2007
, “
A Quasi-Dimensional Model for the Power Cycle of a Hydrogen-Fuelled ICE
,”
Int. J. Hydrogen Energy
,
32
(15), pp.
3545
3554
.
38.
Premakumara
,
G.
,
2013
, “Experimental System Development and Numerical Analysis of a Hydrogen Fuelled Engine for Transport Sector,” Ph.D. thesis, Indian Institute of Technology Delhi, New Delhi, India.
You do not currently have access to this content.