In this study, a numerical study is performed by KIVA–CHEMKIN code to investigate the effects of biodiesel addition and exhaust gas recirculation (EGR) on diesel engine premixed charge compression ignition (PCCI) combustion, performance, and emission characteristics. The studies are performed for neat diesel fuel and mixture of 10–40% biodiesel addition at 67%, 50%, and 40% EGR. For this purpose, a multichemistry surrogate mechanism using methyl decanoate (MD) and methyl-9-decenoate (MD9D) is used. The main innovation of this work is analyzing the chemical, thermodynamic, and dilution effects of biodiesel addition as well as different EGR ratios on PCCI combustion behavior. The results show that the main effect of EGR on PCCI combustion of biodiesel blend is related to the high temperature heat release (HTHR), and its effect on low temperature heat release (LTHR) is low. With increasing biodiesel addition, the role of the chemical effect is increased compared to the thermodynamic and dilution effects. Rate of production analysis (ROPA) indicate that for the different biodiesel ratios, the effect of reaction nC7H16 + HO2 = C7H15-2 + H2O2 is more effective on the start of combustion (SOC) compared to the other reactions. For a defined biodiesel addition, with decreasing EGR, total (unburned) hydrocarbon (THC) and CO are decreased, while NOx and indicated specific fuel consumption (ISFC) are increased.

References

References
1.
Kimura
,
S.
,
Aoki
,
O.
,
Kitahara
,
Y.
, and
Aiyoshizawa
,
E.
,
2001
, “Ultra-Clean Combustion Technology Combining a Low-Temperature and Premixed Combustion Concept for Meeting Future Emission Standards,” SAE Technical Paper No. 2001–01-0200.
2.
Shuai
,
S.
,
Abani
,
N.
,
Yoshikawa
,
T.
,
Reitz
,
R. D.
, and
Park
,
S. W.
,
2009
, “
Simulating Low Temperature Diesel Combustion With Improved Spray Models
,”
Int. J. Therm. Sci.
,
48
(9), pp.
1786
1799
.
3.
Komninos
,
N. P.
, and
Rakopoulos
,
C. D.
,
2012
, “
Modeling HCCI Combustion of Biofuels: A Review
,”
Renewable Sustainable Energy Rev.
,
16
(3), pp.
1588
1610
.
4.
Imtenan
,
S.
,
Varman
,
M.
,
Masjuki
,
H. H.
,
Kalam
,
M. A.
,
Sajjad
,
H.
,
Arbab
,
M. I.
, and
Rizwanul
,
F. I. M.
,
2014
, “
Impact of Low Temperature Combustion Attaining Strategies on Diesel Engine Emissions for Diesel and Biodiesels: A Review
,”
Energy Convers. Manage.
,
80
, pp.
329
356
.
5.
Guo
,
H.
, and
Neill
,
W. S.
,
2013
, “
The Effect of Hydrogen Addition on Combustion and Emission Characteristics of an n-Heptane Fuelled HCCI Engine
,”
Int. J. Hydrogen Energy
,
38
(26), pp.
11429
11437
.
6.
Kongsereeparp
,
P.
, and
Checkel
,
M. D.
,
2008
, “Environmental, Thermodynamic and Chemical Factor Effects on Heptane- and CNG-Fuelled HCCI Combustion With Various Mixture Compositions,” SAE Technical Paper No. 2008-01-0038.
7.
Voshtani
,
S.
,
Reyhanian
,
M.
,
Ehteram
,
M.
, and
Hosseini
,
V.
,
2014
, “
Investigating Various Effects of Reformer Gas Enrichment on a Natural Gas-Fueled HCCI Combustion Engine
,”
Int. J. Hydrogen Energy
,
39
(34), pp.
19799
19809
.
8.
Neshat
,
E.
,
Saray
,
R. K.
, and
Hosseini
,
V.
,
2016
, “
Effect of Reformer Gas Blending on Homogeneous Charge Compression Ignition Combustion of Primary Reference Fuels Using Multi Zone Model and Semi Detailed Chemical-Kinetic Mechanism
,”
Appl. Energy
,
179
, pp.
463
478
.
9.
Fang
,
T.
,
Lin
,
Y. C.
,
Foong
,
T. M.
, and
Lee
,
C. F.
,
2008
, “
Reducing NOx Emissions From a Biodiesel-Fueled Engine by Use of Low-Temperature Combustion
,”
Environ. Sci. Technol.
,
42
(23), pp.
8865
8870
.
10.
Espadafor
,
F. J. J.
,
Torres
,
M. A.
,
Velez
,
J.
,
Carvajal
,
E. A.
, and
Becerra
,
J.
,
2012
, “
Experimental Analysis of Low Temperature Combustion Mode With Diesel and Biodiesel Fuels: A Method for Reducing NOx and Soot Emissions
,”
Fuel Process. Technol.
,
103
, pp.
57
63
.
11.
Tompkins
,
B.
,
Song
,
H.
,
Bittle
,
J.
, and
Jacobs
,
T.
,
2012
, “Biodiesel Later-Phased Low Temperature Combustion Ignition and Burn Rate Behavior on Engine Torque,” SAE Technical Paper No. 2012-01-1305.
12.
Lee
,
Y.
,
Jang
,
K.
,
Han
,
K.
,
Huh
,
K. Y.
, and
Oh
,
S.
,
2013
, “Simulation of a Heavy Duty Diesel Engine Fueled With Soybean Biodiesel Blends in Low Temperature Combustion,” SAE Paper No. 2013-01-1100.
13.
Luo
,
Z.
,
Plomer
,
M.
,
Lu
,
T.
,
Som
,
S.
,
Longman
,
D. E.
,
Sarathy
,
S. M.
, and
Pitz
,
W. J.
,
2012
, “
A Reduced Mechanism for Biodiesel Surrogates for Compression Ignition Engine Applications
,”
Fuel
,
99
, pp.
143
153
.
14.
Chang
,
Y.
,
Jia
,
M.
,
Li
,
Y.
,
Zhang
,
Y.
,
Xie
,
M.
,
Wang
,
H.
, and
Reitz
,
R. D.
,
2015
, “
Development of a Skeletal Oxidation Mechanism for Biodiesel Surrogate
,”
Proc. Combust. Inst.
,
35
(3), pp.
3037
3044
.
15.
Amsden
,
A. A.
,
1997
, “KIVA-3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Valves,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-13313-MS.
16.
Kee
,
R. J.
,
Rupley
,
F. M.
, and
Miller
,
J. A.
,
1989
, “CHEMKIN-II: A FORTRAN Chemical Kinetics Package for the Analyses of Gas Phase Chemical Kinetics,” Sandia Report, SAND 89-8009.
17.
Brown
,
P. N.
,
Byrne
,
G. D.
, and
Hindmarsh
,
A. C.
,
1989
, “
VODE: A Variable Coefficient ODE Solver
,”
SIAM J. Sci. Stat. Comput.
,
10
(5), pp.
1038
1051
.
18.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-ε Models
,”
Combust. Sci. Technol.
,
106
(4–6), pp.
267
295
.
19.
Han
,
Z.
, and
Reitz
,
R. D.
,
1997
, “
A Temperature Wall Function Formulation for Variable-Density Turbulent Flows With Application to Engine Convective Heat Transfer Modeling
,”
Int. J. Heat Mass Transfer
,
40
(3), pp.
613
625
.
20.
Beale
,
J. C.
, and
Reitz
,
R. D.
,
1999
, “
Modeling Spray Atomization With the Kelvin–Helmholtz/Rayleigh–Taylor Hybrid Model
,”
Atomization Sprays
,
9
(6), pp.
623
650
.
21.
Golovitchev
,
V. I.
, and
Yang
,
J.
,
2009
, “
Construction of Combustion Models for Rapeseed Methyl Ester Bio-Diesel Fuel for Internal Combustion Engine Applications
,”
Biotechnol. Adv.
,
27
(5), pp.
641
655
.
22.
Brakora
,
J.
, and
Reitz
,
R.
,
2013
, “A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations,” SAE Paper No. 2013-01-1099.
23.
An
,
H.
,
Yang
,
W.
,
Li
,
J.
,
Maghbouli
,
A.
,
Chua
,
K. J.
, and
Chou
,
S. K.
,
2014
, “
A Numerical Modeling on the Emission Characteristics of a Diesel Engine Fueled by Diesel and Biodiesel Blend Fuels
,”
Appl. Energy
,
130
, pp.
458
465
.
24.
An
,
H.
,
Yang
,
W. M.
,
Maghbouli
,
A.
,
Chou
,
S. K.
, and
Chua
,
K. J.
,
2013
, “
Detailed Physical Properties Prediction of Pure Methyl Esters for Biodiesel Combustion Modeling
,”
Appl. Energy
,
102
, pp.
647
656
.
25.
Opat
,
R.
,
Ra
,
Y.
,
Gonzalez
,
M. A.
,
Krieger
,
R.
,
Reitz
,
R. D.
,
Foster
,
D. E.
,
Durrett
,
R. P.
, and
Siewert
,
R. M.
,
2007
, “Investigation of Mixing and Temperature Effects on HC/CO Emissions for Highly Dilute Low Temperature Combustion in a Light Duty Diesel Engine,” SAE Technical Paper No. 2007-01-0193.
26.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
,
Gardiner
,
W. C.
,
Lissianski
,
V. V.
, and
Qin
,
Z.
, 2016, “
What's New in GRI-Mech 3.0
,” GRI-Mech, accessed Nov. 22, 2017, http://combustion.berkeley.edu/gri-mech/version30/text30.html
27.
Galletti
,
C.
,
Ferrarotti
,
M.
,
Parente
,
A.
, and
Tognotti
,
L.
,
2015
, “
Reduced NO Formation Models for CFD Simulations of MILD Combustion
,”
Int. J. Hydrogen Energy
,
40
(14), pp.
4884
4897
.
28.
Saggese
,
C.
,
Frassoldati
,
A.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2013
, “
A Wide Range Kinetic Modeling Study of Pyrolysis and Oxidation of Benzene
,”
Combust. Flame
,
160
(7), pp.
1168
1190
.
29.
Müller
,
M.
,
2010
, “General Air Fuel Ratio and EGR Definitions and Their Calculation From Emissions,”
SAE
Paper No. 2010-01-1285.
30.
Fathi
,
M.
,
Khoshbakhti Saray
,
R.
, and
Checkel
,
M. D.
,
2010
, “
Detailed Approach for Apparent Heat Release Analysis in HCCI Engines
,”
Fuel
,
89
(9), pp.
2323
2330
.
31.
Narayanan
,
A. M.
, and
Jacobs
,
T. J.
,
2015
, “
Observed Differences in Low-Temperature Heat Release and Their Possible Effect on Efficiency Between Petroleum Diesel and Soybean Biodiesel Operating in Low-Temperature Combustion Mode
,”
Energy Fuels
,
29
(7), pp.
4510
4521
.
32.
Brakora
,
J. L.
,
2012
, “
A Comprehensive Combustion Model for Biodiesel-Fueled Engine Simulations
,” Ph.D. dissertation, University of Wisconsin-Madison, Madison, WI.
33.
Collin
,
R.
,
Nygren
,
J.
,
Richter
,
M.
, and
Aldén
,
M.
,
2003
, “Simultaneous OH- and Formaldehyde-LIF Measurements in an HCCI Engine,”
SAE
Paper No. 2003-01-3218.
34.
Kokjohn
,
S. L.
,
Splitter
,
D. A.
,
Hanson
,
R. M.
, and
Reitz
,
R. D.
,
2010
, “
Modeling Charge Preparation and Combustion in Diesel Fuel, Ethanol, and Dual-Fuel PCCI Engines
,”
ILASS-Americas 22nd Annual Conference on Liquid Atomization and Spray Systems
, Cincinnati, OH, May 16–19.http://ilass.org/2/ConferencePapers/ILASS2010-125.PDF
You do not currently have access to this content.