Diesel-natural gas dual fuel engine has gained increasing interesting in recent years because of its excellent power and economy. However, the reliability of the dual fuel engine does not meet the requirements of practical application. The piston maximun temperature (PMT) of the dual fuel engine easily exceeds the security border. In view of this, this paper proposes a method based on the lasso regression to estimate the PMT of the dual fuel engine, so as to real-timely monitor the health state of the dual fuel engine. Specifically, PMTs under some working conditions were offline acquired by the finite element analysis with ANSYS. A model is presented to describe the relationship between the PMT and some indirect engine variables, including NOx emission, excess air coefficient, engine speed, and inlet pressure, and the model parameters are optimized using the lasso regression algorithm, which can be easily implemented by the electronic control unit (ECU). Finally, the model is employed to real-timely estimate the PMT of the dual fuel engine. Experiments reveal that the proposed model produces satisfying predictions with deviations less than 10 °C.

References

References
1.
de Tablan
,
A.
,
2014
, “Diesel and Compressed Natural Gas Dual Fuel Engine Operating Envelope for Heavy Duty Application,”
ASME
Paper No. ICEF2014-5476.
2.
Konigsson
,
F.
,
Stalhammar
,
P.
, and
Ångström
,
H.
,
2011
, “Combustion Modes in a Diesel-CNG Dual Fuel Engine,”
SAE
Paper No. 2011-01-1962.
3.
Ahmad-I
,
N.
,
Babu
,
M.
, and
Ramesh
,
A.
,
2005
, “Experimental Investigations of Different Parameters Affecting the Performance of A CNG-Diesel Dual Fuel Engine,”
SAE
Paper No. 2005-01-3767.
4.
Singh
,
A.
,
Anderson
,
D.
,
Hoffman
,
M.
, and
Filipi
,
Z.
,
2014
, “An Evaluation of Knock Determination Techniques for Diesel-Natural Gas Dual Fuel Engines,”
SAE
Paper No. 2014-01-2695.
5.
Wannatong
,
K.
,
Akarapanyavit
,
N.
,
Siengsanorh
,
S.
, and
Chanchaona
,
S.
,
2007
, “Combustion and Knock Characteristics of Nature Gas Diesel Dual Fuel Engine,”
SAE
Paper No. 2007-01-2047.
6.
Galal
,
M. G.
,
Abdel Aal
,
M. M.
, and
El Kady
,
M. A.
,
2002
, “
A Comparative Study Between Diesel and Dual-Fuel Engines: Performance and Emissions
,”
Combust. Sci. Technol.
,
174
(
11
), pp.
241
256
.
7.
Liu
,
C.
, and
Karim
,
G. A.
,
2009
, “
Three-Dimensional Computational Fluid Simulation of Diesel and Dual Fuel Engine Combustion
,”
ASME J. Eng. Gas Turbines Power
,
131
(1), p. 012804.
8.
Docquier
,
N.
, and
Candel
,
S.
,
2002
, “
Combustion Control and Sensors: A Review
,”
Prog. Energy Combust. Sci.
,
28
(
2
), pp.
107
150
.
9.
Yuichi
,
S.
,
Takahiro
,
S.
, and
Masski
,
U.
,
2004
, “Study on Engine Management System Using In-Cylinder Pressure Sensor Integrated With Spark Plug,”
SAE
Paper No. 2004-01-0519.
10.
Rizzoni
,
G.
,
1989
, “
Estimate of Indicated Torque From Crankshaft Speed Fluctuations-A Model for the Dynamics of the IC-Engine
,”
IEEE Trans. Veh. Technol.
,
38
(
3
), pp.
168
179
.
11.
Antoni
,
J.
,
Daniere
,
J.
, and
Guillet
,
F.
,
2002
, “
Effective Vibration Analysis of IC Engine Using Cyclostationarity—Part I: A Methodology for Condition Monitoring
,”
J. Sound Vib.
,
257
(
5
), pp.
815
837
.
12.
Lo
,
K. H.
,
Shek
,
C. H.
, and
Lai
,
J. K. L.
,
2008
, “
Metallurgical Temperature Sensors
,”
Recent Patents Mech. Eng.
,
1
(
3
), pp.
225
232
.
13.
Madison
,
D. P.
,
Miers
,
S. A.
,
Barna
,
G. L.
, and
Richerson
,
J. L.
,
2013
, “
Comparison of Piston Temperature Measurement Methods: Templugs Versus Wireless Telemetry With Thermocouples
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
061602
.
14.
Woschni
,
G.
, and
Fieger
,
J.
,
1979
, “Determination of Local Heat Transfer Coefficients at the Piston of A High Speed Diesel Engine by Evaluation of Measured Temperature Distribution,”
SAE
Paper No. 790834.
15.
Blauwens
,
J.
,
Smets
,
B.
, and
Peeters
,
J.
,
1977
, “
Mechanism of Prompt NO Formation in Hydrocarbon Flames
,”
Symp. (Int.) Combust.
,
16
(
1
), pp.
1055
1066
.
16.
Shen
,
J.
,
Qin
,
J.
, and
Yao
,
M.
,
2003
, “Turbocharged Diesel/CNG Dual-Fuel Engines with Intercooler: Combustion, Emissions and Performance,”
SAE
Paper No. 2003-01-3082.
17.
Zhou
,
J. L.
,
Shen
,
Y. C.
,
Zhang
,
C. H.
, and
Pan
,
J. R.
,
2013
, “
The Influence of Intake Temperature and Excessive Air Coefficient on the Performance of a Gasoline HCCI Engine
,”
Adv. Mater. Res.
,
732–733
(3), pp.
3
6
.
18.
Woschni
,
G.
,
1967
, “A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine,”
SAE
Paper No. 670931.
19.
Panayi
,
A.
,
Schock
,
H.
,
Chui
,
B.
, and
Ejakov
,
M.
,
2006
, “Parameterization and FEA Approach for the Assessment of Piston Characteristics,”
SAE
Paper No. 2006-01-0429.
20.
Lou
,
D. M.
,
Zhang
,
Z. Y.
, and
Wang
,
L. L.
,
2005
, “
Heat Transfer Boundary Condition and Thermal Load of Combined-Piston for Locomotive Diesel Engines
,”
J. Tongji Univ. (Nat. Sci.)
,
33
(
5
), pp.
664
667
.
21.
Bishop
,
C. M.
,
2010
,
Pattern Recognition and Machine Learning
,
Springer
,
Berlin
.
22.
De Vito
,
E.
,
Caponnetto
,
A.
, and
Rosasco
,
L.
,
2004
, “
Model Selection for Regularized Least-Squares Algorithm in Learning Theory
,”
Found. Comput. Math.
,
5
(1), pp.
59
85
.
23.
Hoerl
,
A. E.
, and
Kennard
,
R. W.
,
1970
, “
Ridge Regression: Biased Estimation for Nonorthogonal Problems
,”
Technometrics
,
12
(
1
), pp.
55
67
.
24.
Kevin
,
P. M.
,
2012
,
Machine Learning: A Probabilistic Perspective
,
MIT Press
,
Cambridge, UK
.
25.
Robert
,
T.
,
1996
, “
Regression Shrinkage and Selection Via the Lasso
,”
J. R. Stat. Soc.
,
58
(
1
), pp.
267
288
.
26.
Efron
,
B.
,
Hastie
,
T.
,
Johnstone
,
I.
, and
Tibshirani
,
R.
,
2004
, “
Least Angle Regression
,”
Ann. Stat.
,
32
(
2
), pp.
407
499
.
27.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
14th International Joint Conference on Artificial Intelligence
, Montreal, QC, Canada, Aug. 20–25, pp. 1137–1143.
You do not currently have access to this content.