Due to the high temperature of the flue gas flowing at high velocity and pressure, the wall cooling is extremely important for the liner of a gas turbine engine combustor. The liner material is heat-resistant steel with relatively low heat conductivity. To accommodate outside wall forced air cooling, the liner is designed to be thin, which unfortunately facilitates the possibility of high-amplitude wall vibrations (and failure due to fatigue) in case of pressure fluctuations in the combustor. The latter may occur due to a possible occurrence of a feedback loop between the aerodynamics, the combustion, the acoustics, and the structural vibrations. The structural vibrations act as a source of acoustic emitting the acoustic waves to the confined fluid. This leads to amplification in the acoustic filed and hence the magnitude of instability in the system. The aim of this paper is to explore the mechanism of fluid–structure interaction (FSI) on the LIMOUSINE setup which leads to limit cycle of pressure oscillations (LCO). Computational fluid dynamics (CFD) analysis using a RANS approach is performed to obtain the thermal and mechanical loading of the combustor liner, and finite element model (FEM) renders the temperature, stress distribution, and deformation in the liner. Results are compared to other numerical approaches like zero-way interaction and conjugated heat transfer model (CHT). To recognize the advantage/disadvantage of each method, validation is made with the available measured data for the pressure and vibration signals, showing that the thermoacoustic instabilities are well predicted using the CHT and two-way coupled approaches, while the zero-way interaction model prediction gives the largest discrepancy from experimental results.

References

References
1.
Lieuwen
,
T.
,
Torres
,
H.
,
Johnson
,
C.
, and
Zinn
,
B. T.
,
2000
, “
A Mechanism of Combustion Instability in Lean Premixed Gas Turbine Combustors
,”
ASME J. Eng. Gas Turbines Power
,
123
(1), pp.
182
189
.
2.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(4), pp.
293
364
.
3.
Altunlu
,
A. C.
,
van der Hoogt
,
P. J. M.
, and
de Boer
,
A.
,
2014
, “
Sensitivity of Combustion Driven Structural Dynamics and Damage to Thermo-Acoustic Instability: Combustion-Acoustics-Vibration
,”
ASME J. Eng. Gas Turbines Power
,
136
(
5
), p.
051501
.
4.
Dowling
,
A. P.
,
1995
, “
The Calculation of Thermoacoustic Oscillations
,”
J. Sound Vib.
,
180
(4), pp.
557
581
.
5.
Huls
,
R.
,
2006
, “Acousto-Elastic Interaction in Combustion Chambers,”
Ph.D. dissertation
,
University of Twente
,
Enschede, The Netherlands
.https://research.utwente.nl/en/publications/acousto-elastic-interaction-in-combustion-chambers
6.
Ahn
,
K.
, and
Yu
,
K. H.
,
2012
, “
Effects of Damköhler Number on Vortex–Flame Interaction
,”
Combust. Flame
,
159
(2), pp.
686
696
.
7.
Xie
,
G.
,
Zhang
,
W.
, and
Sunden
,
B.
,
2012
, “
Computational Analysis of the Influences of Guide Ribs/Vanes on Enhanced Heat Transfer of a Turbine Blade Tip-Wall
,”
Int. J. Therm. Sci.
,
51
, pp.
184
194
.
8.
Kim
,
K. M.
,
Park
,
J. S.
,
Lee
,
D. H.
,
Lee
,
T. W.
, and
Cho
,
H. H.
,
2011
, “
Analysis of Conjugated Heat Transfer, Stress and Failure in a Gas Turbine Blade With Circular Cooling Passages
,”
Eng. Failure Anal.
,
18
(4), pp.
1212
1222
.
9.
Huls
,
R. A.
,
Sengissen
,
A. X.
,
van der Hoogt
,
P. J. M.
,
Kok
,
J. B. W.
,
Poinsot
,
T.
, and
de Boer
,
A.
,
2007
, “
Vibration Prediction in Combustion Chambers by Coupling Finite Elements and Large Eddy Simulations
,”
J. Sound Vib.
,
304
(1–2), pp.
224
229
.
10.
Pozarlik
,
A. K.
, and
Kok
,
J. B. W.
,
2014
, “
Fluid-Structure Interaction in Combustion System of a Gas Turbine—Effect of Liner Vibrations
,”
ASME J. Eng. Gas Turbines Power
,
136
(9), p.
091502
.
11.
Petchenko
,
A.
,
Bychkov
,
V.
,
Akkerman
,
V. Y.
, and
Eriksson
,
L.-E.
,
2007
, “
Flame–Sound Interaction in Tubes With Nonslip Walls
,”
Combust. Flame
,
149
(4), pp.
418
434
.
12.
Foucher
,
F.
,
Burnel
,
S.
,
Mounaı̈m-Rousselle
,
C.
,
Boukhalfa
,
M.
,
Renou
,
B.
, and
Trinité
,
M.
,
2003
, “
Flame Wall Interaction: Effect of Stretch
,”
Exp. Therm. Fluid Sci.
,
27
(4), pp.
431
437
.
13.
Lefebvre
,
A. H.
, and
Ballal
,
D. R.
,
2010
,
Gas Turbine Combustion: Alternative Fuels and Emissions
,
Taylor & Francis
, Abington, UK.
14.
Candel
,
S.
,
2002
, “
Combustion Dynamics and Control: Progress and Challenges
,”
Proc. Combust. Inst.
,
29
(1), pp.
1
28
.
15.
Leppington
,
F. G.
,
1978
, “
Acoustic Scattering by Membranes and Plates With Line Constraints
,”
J. Sound Vib.
,
58
(3), pp.
319
332
.
16.
Shen
,
H.
,
Wen
,
J.
,
Yu
,
D.
,
Asgari
,
M.
, and
Wen
,
X.
,
2013
, “
Control of Sound and Vibration of Fluid-Filled Cylindrical Shells Via Periodic Design and Active Control
,”
J. Sound Vib.
,
332
(18), pp.
4193
4209
.
17.
Schotté
,
J. S.
, and
Ohayon
,
R.
,
2013
, “
Linearized Formulation for Fluid–Structure Interaction: Application to the Linear Dynamic Response of a Pressurized Elastic Structure Containing a Fluid With a Free Surface
,”
J. Sound Vib.
,
332
(10), pp.
2396
2414
.
18.
Pozarlik
,
A. K.
,
2010
, “Vibro-Acoustical Instabilities Induced by Combustion Dynamics in Gas Turbine Combustors,”
Ph.D. dissertation
,
University of Twente
,
Enschede, The Netherlands
.https://research.utwente.nl/en/publications/vibro-acoustical-instabilities-induced-by-combustion-dynamics-in-
19.
Alemela
,
P.
,
Casado
,
J.
,
Kumar
,
S.
, and
Kok
,
J.
,
2013
, “
Thermoacoustic Analysis of the Dynamic Pressure Inside a Model Combustor During Limit Cycle Oscillations
,”
Int. J. Spray Combust. Dyn.
,
5
(1), pp.
25
48
.
20.
Altunlu
,
A.
C,
Shahi
,
M.
,
Pozarlik
,
A. K.
,
van der Hoogt
,
P. J. M.
,
Kok
,
J. B. W.
, and
de Boer
,
A.
,
2012
, “
Fluid-Structure Interaction on the Combustion Instability
,”
19th International Congress on Sound and Vibration
(
ICSV
), Vilnius, Lithuania, July 8–12, pp.
291
298
.https://research.utwente.nl/en/publications/fluid-structure-interaction-on-the-combustion-instability
21.
Bothien
,
M. R.
,
Moeck
,
J. P.
, and
Oliver Paschereit
,
C.
,
2008
, “
Active Control of the Acoustic Boundary Conditions of Combustion Test Rigs
,”
J. Sound Vib.
,
318
(4–5), pp.
678
701
.
22.
Rayleigh
,
J.
,
1878
, “
The Explanation of Certain Acoustical Phenomena
,”
Nature
,
18
(455), pp.
319
321
.
23.
Nicoud
,
F.
, and
Poinsot
,
T.
,
2005
, “
Thermoacoustic Instabilities: Should the Rayleigh Criterion Be Extended to Include Entropy Changes?
,”
Combust. Flame
,
142
(1–2), pp.
153
159
.
24.
Polifke
,
W.
,
Poncet
,
A.
,
Paschereit
,
C. O.
, and
Döbbeling
,
K.
,
2001
, “
Reconstruction of Acoustic Transfer Matrices by Instationary Computational Fluid Dynamics
,”
J. Sound Vib.
,
245
(3), pp.
483
510
.
25.
Rijke
,
P. L.
,
1859
, “
On the Vibration of the Air in a Tube Open at Both Ends
,”
Philos. Mag.
,
17
(116), pp.
419
422
.
26.
Maity
,
D.
, and
Bhattacharyya
,
S. K.
,
2003
, “
A Parametric Study on Fluid–Structure Interaction Problems
,”
J. Sound Vib.
,
263
(4), pp.
917
935
.
27.
Michler
,
C.
,
Hulshoff
,
S. J.
,
van Brummelen
,
E. H.
, and
de Borst
,
R.
,
2004
, “
A Monolithic Approach to Fluid–Structure Interaction
,”
Comput. Fluids
,
33
(5–6), pp.
839
848
.
28.
Blom
,
F. J.
,
1998
, “
A Monolithical Fluid-Structure Interaction Algorithm Applied to the Piston Problem
,”
Comput. Methods Appl. Mech. Eng.
,
167
(3–4), pp.
369
391
.
29.
Felippa, C. A.
,
Park
,
K. C.
, and
Farhat
,
C.
,
2001
, “
Partitioned Analysis of Coupled Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
190
(24–25), pp.
3247
3270
.
30.
Piperno
,
S.
,
Farhat
,
C.
, and
Larrouturou
,
B.
,
1995
, “
Partitioned Procedures for the Transient Solution of Coupled Aeroelastic Problems—Part I: Model Problem, Theory and Two-Dimensional Application
,”
Comput. Methods Appl. Mech. Eng.
,
124
(1–2), pp.
79
112
.
31.
Piperno
,
S.
, and
Farhat
,
C.
,
2001
, “
Partitioned Procedures for the Transient Solution of Coupled Aeroelastic Problems—Part II: Energy Transfer Analysis and Three-Dimensional Applications
,”
Comput. Methods Appl. Mech. Eng.
,
190
(24–25), pp.
3147
3170
.
32.
Hübner
,
B.
,
Walhorn
,
E.
, and
Dinkler
,
D.
,
2004
, “
A Monolithic Approach to Fluid–Structure Interaction Using Space–Time Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
193
(23–26), pp.
2087
2104
.
33.
Storti
,
M. A.
,
Nigro
,
N. M.
,
Paz
,
R. R.
, and
Dalcín
,
L. D.
,
2009
, “
Strong Coupling Strategy for Fluid–Structure Interaction Problems in Supersonic Regime Via Fixed Point Iteration
,”
J. Sound Vib.
,
320
(4–5), pp.
859
877
.
34.
Schäfer
,
M.
,
Heck
,
M.
, and
Yigit
,
S.
,
2006
, “
An Implicit Partitioned Method for the Numerical Simulation of Fluid-Structure Interaction
,”
Fluid-Structure Interaction
,
H.-J.
Bungartz
, and
M.
Schäfer
, eds.,
Springer
,
Berlin
, pp.
171
194
.
35.
Gatzhammer
,
B.
,
2008
, “A Partitioned Approach for Fluid-Structure Interaction on Cartesian Grids,”
Master's thesis
, Technische Universitüt München, Munich, Germany.https://www5.in.tum.de/pub/gatzhammer08.pdf
36.
Gövert
,
S.
, and
Kok
,
J. B. W.
,
2013
, “
Fluid-Structure Coupling for Numerical Simulations of a Gas Turbine Combustor
,”
20th International Congress on Sound and Vibration, Bangkok
, Thailand, July 7–11, pp.
2986
2994
.
37.
Shahi
,
M.
,
Kok
,
J. B. W.
,
Pozarlik
,
A.
,
Roman Casado
,
J. C.
, and
Sponfeldner
,
T.
, 2013, “
Sensitivity of the Numerical Prediction of Turbulent Combustion Dynamics in the LIMOUSINE Combustor
,”
ASME J. Eng. Gas Turbines Power
,
136
(2), p. 021504.
38.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere
,
New York
.
39.
Kumar
,
T. V. S.
,
Alemela
,
P. R.
, and
Kok
,
J. B. W.
,
2011
, “Dynamics of Flame Stabilized by Triangular Bluff Body in Partially Premixed Methane-Air Combustion,”
ASME
Paper No. GT2011-46241.
40.
Forkel
,
H.
,
2012
, “CFX 14.5 Burning Velocity Model Discretization for Non-Premixed Combustion,”
ANSYS Inc.
, Canonsburg, PA.
41.
Smooke
,
M. D.
,
Puri
,
I. K.
, and
Seshadri
,
K.
,
1988
, “
A Comparison Between Numerical Calculations and Experimental Measurements of the Structure of a Counterflow Diffusion Flame Burning Diluted Methane in Diluted Air
,”
Symp. (Int.) Combust.
,
21
(1), pp.
1783
1792
.
42.
ANSYS,
2011
, “ANSYS CFX Solver Manager User's Guide, Release 14.0,” ANSYS Inc., Canonsburg, PA.
43.
Altunlu
,
A. C.
,
2013
, “The Analysis of Mechanical Integrity in Gas Turbine Engines Subjected to Combustion Instabilities,”
Ph.D. dissertation
,
University of Twente
,
Enschede, The Netherlands
, p.
182
.
44.
Blevins
,
R. D.
,
1984
,
Formulas for Natural Frequency and Mode Shape
,
Krieger Publishing
, Malabar, FL.
45.
ANSYS,
2011
, “ANSYS Mechanical APDL Element Reference, Release 14.0,” ANSYS Inc., Canonsburg, PA.
46.
Shahi
,
M.
,
Kok
,
J. B. W.
,
Casado
,
J. C. R.
, and
Pozarlik
,
A.
,
2014
, “
Assessment of Thermoacoustic Instabilities in a Partially Premixed Model Combustor Using URANS Approach
,”
Appl. Therm. Eng.
,
71
(1), pp.
276
290
.
47.
Filosa
,
A.
,
Shahi
,
M.
,
Tomasello
,
A.
,
Noll
,
B.
,
Aigner
,
M.
, and
Kok
,
J.
,
2013
, “
Numerical Studies of Unsteady Heat Transfer With Thermoacoustics Oscillations
,” 20th International Congress on Sound and Vibration, Bangkok, Thailand, July 7–11, pp. 3018–3026.
48.
Roman Casado
,
J. C.
,
2013
, “Nonlinear Behavior of the Thermoacoustic Instabilities in the Limousine Combustor,”
Ph.D. dissertation
,
University of Twente
,
Enschede, The Netherlands
.https://research.utwente.nl/en/publications/nonlinear-behavior-of-the-thermoacoustic-instabilities-in-the-lim
49.
Sivakumar
,
R.
, and
Chakravarthy
,
S. R.
,
2008
, “
Experimental Investigation of the Acoustic Field in a Bluff-Body Combustor
,”
Int. J. Aeroacoustics
,
7
(3–4), pp.
267
299
.
You do not currently have access to this content.