Combustion instability, the coupling between flame heat release rate oscillations and combustor acoustics, is a significant issue in the operation of gas turbine combustors. This coupling is often driven by oscillations in the flow field. Shear layer roll-up, in particular, has been shown to drive longitudinal combustion instability in a number of systems, including both laboratory and industrial combustors. One method for suppressing combustion instability would be to suppress the receptivity of the shear layer to acoustic oscillations, severing the coupling mechanism between the acoustics and the flame. Previous work suggested that the existence of a precessing vortex core (PVC) may suppress the receptivity of the shear layer, and the goal of this study is to first, confirm that this suppression is occurring, and second, understand the mechanism by which the PVC suppresses the shear layer receptivity. In this paper, we couple experiment with linear stability analysis to determine whether a PVC can suppress shear layer receptivity to longitudinal acoustic modes in a nonreacting swirling flow at a range of swirl numbers. The shear layer response to the longitudinal acoustic forcing manifests as an m = 0 mode since the acoustic field is axisymmetric. The PVC has been shown both in experiment and linear stability analysis to have m = 1 and m = −1 modal content. By comparing the relative magnitude of the m = 0 and m = −1,1 modes, we quantify the impact that the PVC has on the shear layer response. The mechanism for shear layer response is determined using companion forced response analysis, where the shear layer disturbance growth rates mirror the experimental results. Differences in shear layer thickness and azimuthal velocity profiles drive the suppression of the shear layer receptivity to acoustic forcing.

References

References
1.
Lieuwen
,
T. C.
, and
Yang
,
V.
,
2005
, “
Progress in Astronautics and Aeronautics
,”
Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms and Modeling
,
F.
Lu
, ed.,
AIAA
,
Reston, VA
.
2.
Ducruix
,
S.
,
Schuller
,
T.
,
Durox
,
D.
, and
Candel
,
S.
,
2003
, “
Combustion Dynamics and Instabilities: Elementary Coupling and Driving Mechanisms
,”
J. Propul. Power
,
19
(
5
), pp.
722
734
.
3.
Altay
,
H. M.
,
Speth
,
R. L.
,
Hudgins
,
D. E.
, and
Ghoniem
,
A. F.
,
2009
, “
Flame–Vortex Interaction Driven Combustion Dynamics in a Backward-Facing Step Combustor
,”
Combust. Flame
,
156
(
5
), pp.
1111
1125
.
4.
McManus
,
K.
,
Vandsburger
,
U.
, and
Bowman
,
C.
,
1990
, “
Combustor Performance Enhancement Through Direct Shear Layer Excitation
,”
Combust. Flame
,
82
(
1
), pp.
75
92
.
5.
Shanbhogue
,
S.
,
Shin
,
D.-H.
,
Hemchandra
,
S.
,
Plaks
,
D.
, and
Lieuwen
,
T.
,
2009
, “
Flame-Sheet Dynamics of Bluff-Body Stabilized Flames During Longitudinal Acoustic Forcing
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
1787
1794
.
6.
Chaudhuri
,
S.
,
Kostka
,
S.
,
Renfro
,
M. W.
, and
Cetegen
,
B. M.
,
2010
, “
Blowoff Dynamics of Bluff Body Stabilized Turbulent Premixed Flames
,”
Combust. Flame
,
157
(
4
), pp.
790
802
.
7.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2012
, “
Further Characterization of the Disturbance Field in a Transversely Excited Swirl-Stabilized Flame
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
011501
.
8.
Paschereit
,
C. O.
,
Gutmark
,
E.
, and
Weisenstein
,
W.
,
1999
, “
Coherent Structures in Swirling Flows and Their Role in Acoustic Combustion Control
,”
Phys. Fluids
,
11
(
9
), pp.
2667
2678
.
9.
Kirthy
,
S. K.
,
Hemchandra
,
S.
,
Hong
,
S.
,
Shanbhogue
,
S.
, and
Ghoniem
,
A. F.
,
2016
, “
Role of Shear Layer Instability in Driving Pressure Oscillations in a Backward Facing Step Combustor
,”
ASME
Paper No. GT2016-57322.
10.
Hong
,
S.
,
Speth
,
R. L.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2013
, “
Examining Flow-Flame Interaction and the Characteristic Stretch Rate in Vortex-Driven Combustion Dynamics Using PIV and Numerical Simulation
,”
Combust. Flame
,
160
(
8
), pp.
1381
1397
.
11.
Lucca-Negro
,
O.
, and
O'Doherty
,
T.
,
2001
, “
Vortex Breakdown: A Review
,”
Prog. Energy Combust. Sci.
,
27
(
4
), pp.
431
481
.
12.
Kim
,
D.
,
Lee
,
J. G.
,
Quay
,
B. D.
,
Santavicca
,
D. A.
,
Kim
,
K.
, and
Srinivasan
,
S.
,
2010
, “
Effect of Flame Structure on the Flame Transfer Function in a Premixed Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
132
(
2
), p.
021502
.
13.
Durox
,
D.
,
Schuller
,
T.
,
Noiray
,
N.
, and
Candel
,
S.
,
2009
, “
Experimental Analysis of Nonlinear Flame Transfer Functions for Different Flame Geometries
,”
Proc. Combust. Inst.
,
32
(
1
), pp.
1391
1398
.
14.
McManus
,
K.
,
Poinsot
,
T.
, and
Candel
,
S.
,
1993
, “
A Review of Active Control of Combustion Instabilities
,”
Prog. Energy Combust. Sci.
,
19
(
1
), pp.
1
29
.
15.
Syred
,
N.
,
2006
, “
A Review of Oscillation Mechanisms and the Role of the Precessing Vortex Core (PVC) in Swirl Combustion Systems
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
93
161
.
16.
Mathews
,
B.
,
Hansford
,
S.
, and
O'Connor
,
J.
,
2016
, “
Impact of Swirling Flow Structure on Shear Layer Vorticity Fluctuation Mechanisms
,”
ASME
Paper No. GT2016-56460.
17.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
18.
Hansford
,
S.
,
O'Connor
,
J.
,
Manoharan
,
K.
, and
Hemchandra
,
S.
,
2015
, “
Impact of Flow Non-Axisymmetry on Swirling Flow Dynamics and Receptivity to Acoustics
,”
ASME
Paper No. GT2015-43377.
19.
Tammisola
,
O.
, and
Juniper
,
M.
,
2016
, “
Coherent Structures in a Swirl Injector at Re=4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.
20.
Oberleithner
,
K.
,
Stöhr
,
M.
,
Im
,
S. H.
,
Arndt
,
C. M.
, and
Steinberg
,
A. M.
,
2015
, “
Formation and Flame-Induced Suppression of the Precessing Vortex Core in a Swirl Combustor: Experiments and Linear Stability Analysis
,”
Combust. Flame
,
162
(
8
), pp.
3100
3114
.
21.
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
An Assessment of Turbulence Models for Linear Hydrodynamic Stability Analysis of Strongly Swirling Jets
,”
Eur. J. Mech.-B/Fluids
,
59
, pp.
205
218
.
22.
Kuhn
,
P.
,
Moeck
,
J. P.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
Control of the Precessing Vortex Core by Open and Closed-Loop Forcing in the Jet Core
,”
ASME
Paper No. GT2016-57686.
23.
Crighton
,
D.
, and
Gaster
,
M.
,
1976
, “
Stability of Slowly Diverging Jet Flow
,”
J. Fluid Mech.
,
77
(
2
), pp.
397
413
.
24.
Huerre
,
P.
, and
Rossi
,
M.
,
1998
, “
Hydrodynamic Instabilities in Open Flows
,”
Hydrodynamic Instabilities in Open Flows
(Collection Alea Saclay Monographs Texts Statistical Physics), Vol.
1
, Cambridge University Press, Cambridge, UK, pp.
81
294
.
25.
Batchelor
,
G.
, and
Gill
,
A. E.
,
1962
, “
Analysis of the Stability of Axisymmetric Jets
,”
J. Fluid Mech.
,
14
(
4
), pp.
529
551
.
26.
Bayliss
,
A.
, and
Turkel
,
E.
,
1992
, “
Mappings and Accuracy for Chebyshev Pseudo-Spectral Approximations
,”
J. Comput. Phys.
,
101
(
2
), pp.
349
359
.
27.
Schmid
,
P. J.
, and
Henningson
,
D. S.
,
2012
,
Stability and Transition in Shear Flows
, Vol.
142
,
Springer Science & Business Media
, New York.
28.
O'Connor
,
J.
, and
Lieuwen
,
T.
,
2012
, “
Recirculation Zone Dynamics of a Transversely Excited Swirl Flow and Flame
,”
Phys. Fluids
,
24
(
7
), p.
075107
.
29.
Kusek
,
S.
,
Corke
,
T.
, and
Reisenthel
,
P.
,
1990
, “
Seeding of Helical Modes in the Initial Region of an Axisymmetric Jet
,”
Exp. Fluids
,
10
(
2–3
), pp.
116
124
.
30.
Leyva
,
I. A.
,
Rodriguez
,
J. I.
,
Chehroudi
,
B.
, and
Talley
,
D.
,
2008
, “
Preliminary Results on Coaxial Jet Spread Angles and the Effects of Variable Phase Transverse Acoustic Fields
,”
AIAA
Paper No. 2008-950.
31.
Manoharan
,
K.
,
Hansford
,
S.
,
O'Connor
,
J.
, and
Hemchandra
,
S.
,
2015
, “
Instability Mechanism in a Swirl Flow Combustor: Precession of Vortex Core and Influence of Density Gradient
,”
ASME
Paper No. GT2015-42985.
32.
Gallaire
,
F.
, and
Chomaz
,
J.-M.
,
2003
, “
Instability Mechanisms in Swirling Flows
,”
Phys. Fluids
,
15
(
9
), pp.
2622
2639
.
33.
Steinberg
,
A. M.
,
Boxx
,
I.
,
Stöhr
,
M.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2010
, “
Flow–Flame Interactions Causing Acoustically Coupled Heat Release Fluctuations in a Thermo-Acoustically Unstable Gas Turbine Model Combustor
,”
Combust. Flame
,
157
(
12
), pp.
2250
2266
.
You do not currently have access to this content.