It has become increasingly cost-effective for the steel industry to invest in the capture of heavily carbonaceous basic oxygen furnace or converter gas, and use it to support the intensive energy demands of the integrated facility, or for surplus energy conversion in power plants. As industry strives for greater efficiency via ever more complex technologies, increased attention is being paid to investigate the complex behavior of by-product syngases. Recent studies have described and evidenced the enhancement of fundamental combustion parameters such as laminar flame speed due to the catalytic influence of H2O on heavily carbonaceous syngas mixtures. Direct formation of CO2 from CO is slow due to its high activation energy, and the presence of disassociated radical hydrogen facilitates chain branching species (such as OH), changing the dominant path for oxidation. The observed catalytic effect is nonmonotonic, with the reduction in flame temperature eventually prevailing, and overall reaction rate quenched. The potential benefits of changes in water loading are explored in terms of delayed lean blow-off (LBO), and primary emission reduction in a premixed turbulent swirling flame, scaled for practical relevance at conditions of elevated temperature (423 K) and pressure (0.1–0.3 MPa). Chemical kinetic models are used initially to characterize the influence that H2O has on the burning characteristics of the fuel blend employed, modeling laminar flame speed and extinction strain rate across an experimental range with H2O vapor fraction increased to eventually diminish the catalytic effect. These modeled predictions are used as a foundation to investigate the experimental flame. OH* chemiluminescence and OH planar laser-induced fluorescence (PLIF) are employed as optical diagnostic techniques to analyze changes in heat release structure resulting from the experimental variation in water loading. A comparison is made with a CH4/air flame and changes in LBO stability limits are quantified, measuring the incremental increase in air flow and again compared against chemical models. The compound benefit of CO and NOx reduction is quantified also, with production first decreasing due to the thermal effect of H2O addition from a reduction in flame temperature, coupled with the potential for further reduction from the change in lean stability limit. Power law correlations have been derived for change in pressure, and equivalent water loading. Hence, the catalytic effect of H2O on reaction pathways and reaction rate predicted and observed for laminar flames are appraised within the challenging environment of turbulent, swirl-stabilized flames at elevated temperature and pressure, characteristic of practical systems.

References

References
1.
Worldsteel Committee on Economic Studies
, 2014, “
World Steel Statistics Archive
,” Worldsteel Association, Brussels, Belgium, accessed Oct. 2, 2016, https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook-.html
2.
Remus
,
R.
,
Aguado-Monsonet
,
M. A.
,
Roudier
,
S.
, and
San
,
L. D.
,
2013
, “Best Available Techniques Reference Document for Iron and Steel Production, Industrial Emissions Directive, 2010/75/EU, IPPC,”
European Commission
, Luxembourg City, Luxembourg.http://eippcb.jrc.ec.europa.eu/reference/BREF/IS_Adopted_03_2012.pdf
3.
Das
,
A. K.
,
Kumar
,
K.
, and
Sung
,
C.
,
2011
, “
Laminar Flame Speeds of Moist Syngas Mixtures
,”
Combust. Flame
,
158
(2), pp.
345
353
.
4.
Pugh
,
D. G.
,
Crayford
,
A. P.
,
Bowen
,
P. J.
, and
Al-Naama
,
M.
,
2016
, “
Parametric Investigation of Water Loading on Heavily Carbonaceous Syngases
,”
Combust. Flame
,
164
, pp.
126
136
.
5.
Xie
,
Y.
,
Wang
,
J.
,
Xu
,
N.
,
Yu
,
S.
,
Zhang
,
M.
, and
Huang
,
Z.
,
2014
, “
Thermal and Chemical Effects of Water Addition on Laminar Burning Velocity of Syngas
,”
Energy Fuels
,
28
(5), pp.
3391
3398
.
6.
Pugh
,
D. G.
,
Crayford
,
A. P.
,
Bowen
,
P. J.
,
O'Doherty
,
T.
, and
Marsh
,
R.
,
2014
, “
Variation in Laminar Burning Velocity and Markstein Length With Water Addition for Industrially Produced Syngases
,”
ASME
Paper No. GT2014-25455.
7.
Singh
,
D.
,
Nishiie
,
T.
,
Tanvir
,
S.
, and
Qiao
,
L.
,
2012
, “
An Experimental and Kinetic Study of Syngas/Air Combustion at Elevated Temperatures and the Effect of Water Addition
,”
Fuel
,
94
, pp.
448
456
.
8.
Pugh
,
D. G.
,
Bowen
,
P.
,
Crayford
,
A.
,
Marsh
,
R.
,
Runyon
,
J.
,
Morris
,
S.
, and
Giles
,
A.
,
2017
, “Dissociative Influence of H2O Vapour/Spray on Lean Blowoff and NOx Reduction for Heavily Carbonaceous Syngas Swirling Flames,”
Combustion and Flame
,
177
, pp. 37–48.
9.
Santner
,
J.
,
Dryer
,
F.
, and
Ju
,
Y.
,
2012
, “
Effect of Water Content on Syngas Combustion at Elevated Pressure
,”
AIAA
Paper No. 2012-0163.
10.
Donohoe
,
N.
,
Heufer
,
K. A.
,
Aul
,
C. J.
,
Petersen
,
E. L.
,
Bourque
,
G.
,
Gordon
,
R.
, and
Curran
,
H. J.
,
2015
, “
Influence of Steam Dilution on the Ignition of Hydrogen, Syngas and Natural Gas Blends at Elevated Pressures
,”
Combust. Flame
,
162
(4), pp.
1126
1135
.
11.
Kéromnès
,
A.
,
Metcalfe
,
W. K.
,
Heufer
,
K. A.
,
Donohoe
,
N.
,
Das
,
A. K.
,
Sung
,
J.
,
Herzler
,
C.
,
Naumann
,
P.
,
Griebel
,
O.
,
Mathieu
,
M. C.
,
Krejci
,
E. L.
,
Petersen
,
C.
,
Pitz
,
W. J.
, and
Curran
,
H. J.
,
2013
, “
An Experimental and Detailed Chemical Kinetic Modeling Study of Hydrogen and Syngas Mixture Oxidation at Elevated Pressures
,”
Combust. Flame
,
160
(6), pp.
995
1011
.
12.
Krejci
,
M. C.
,
Mathieu
,
O.
,
Vissotski
,
A. J.
,
Ravi
,
S.
,
Sikes
,
T. G.
,
Petersen
,
E. L.
,
Kérmonès
,
A.
,
Metcalfe
,
W.
, and
Curran
,
H. J.
,
2013
, “
Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
135
(2), p. 021503.
13.
Rao, A. D.
, 2013, Combined Cycle Systems for Near-Zero Emission Power Generation, Woodhead Publishing, Cambridge, UK, Chap. 5.
14.
Chigier
,
N. A.
, and
Beer
,
J. M.
,
1964
, “
The Flow Region Near the Nozzle in Double Concentric Jets
,”
ASME J. Basic Eng.
,
86
(4), pp.
797
804
.
15.
Sheen
,
H. J.
,
Chen
,
W. J.
,
Jeng
,
S. Y.
, and
Huang
,
T. L.
,
1996
, “
Correlation of Swirl Number for a Radial-Type Swirl Generator
,”
Exp. Therm. Fluid Sci.
,
12
(4), pp.
444
451
.
16.
Cabot
,
G.
,
Vauchelles
,
D.
,
Taupin
,
B.
, and
Boukhalfa
,
A.
,
2004
, “
Experimental Study of Lean Premixed Turbulent Combustion in a Scale Gas Turbine Chamber
,”
Exp. Therm. Fluid Sci.
,
28
(7), pp.
683
690
.
17.
Panoutsos
,
C. S.
,
Hardalupas
,
Y.
, and
Taylor
,
A. M. K. P.
,
2009
, “
Numerical Evaluation of Equivalence Ratio Measurement Using OH∗ and CH∗ Chemiluminescence in Premixed and Non-Premixed Methane–Air Flames
,”
Combust. Flame
,
156
(2), pp.
273
291
.
18.
Lauer
,
M.
, and
Sattelmayer
,
T.
,
2008
, “
Heat Release Calculation in a Turbulent Swirl Flame From Laser and Chemiluminescence Measurements
,” 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics
, Lisbon, Portugal, July 7–10, pp. 1–12.https://www.researchgate.net/publication/228481503_Heat_release_calculation_in_a_turbulent_swirl_flame_from_laser_and_chemiluminescence_measurements
19.
Marsh
,
R.
,
Runyon
,
J.
,
Giles
,
A.
,
Morris
,
S.
,
Pugh
,
D. G.
,
Valera-Medina
,
A.
, and
Bowen
,
P. J.
,
2016
, “
Premixed Methane Oxycombustion in Nitrogen and Carbon Dioxide Atmospheres: Measurement of Operating Limits, Flame Location and Emissions
,”
Proc. Combust. Inst.
,
36
(3), pp. 3949–3958.
20.
Taamallah
,
S.
,
Shanbhogue
,
S. J.
, and
Ghoniem
,
A. F.
,
2016
, “
Turbulent Flame Stabilization Modes in Premixed Swirl Combustion: Physical Mechanism and Karlovitz Number-Based Criterion
,”
Combust. Flame
,
166
, pp.
19
33
.
21.
Killer
,
C.
,
2013
, “Abel Inversion Algorithm,” The Mathworks Inc., Natick, MA, accessed Dec. 1, 2015, http://www.mathworks.com/matlabcentral/fileexchange/43639-abel-inversion-algorithm
22.
Shanbhogue
,
S. J.
,
Sanusi
,
Y. S.
,
Taamallah
,
S.
,
Habib
,
M. A.
,
Mokheimer
,
E. M. A.
, and
Ghoniem
,
A. F.
,
2016
, “
Flame Macrostructures, Combustion Instability and Extinction Strain Scaling in Swirl-Stabilized Premixed CH4/H2 Combustion
,”
Combust. Flame
,
163
, pp.
494
507
.
23.
Runyon
,
J.
,
Marsh
,
R.
,
Sevcenco
,
Y.
,
Pugh
,
D.
, and
Morris
,
S.
,
2015
, “
Development and Commissioning of a Chemiluminescence Imaging System for an Optically-Accessible High-Pressure Generic Swirl Burner
,”
Seventh European Combustion Meeting
(
ECM
), Budapest, Hungary, Mar. 31–Apr. 2, pp.
1–6
.http://orca.cf.ac.uk/95700/
24.
Krishna
,
S.
, and
Ravikrishna
,
R.
,
2015
, “
Quantitative OH Planar Laser Induced Fluorescence Diagnostics of Syngas and Methane Combustion in a Cavity Combustor
,”
Combust. Sci. Technol.
,
187
(11), pp.
1661
1682
.
25.
Stopper
,
U.
,
Meier
,
W.
,
Sadanandan
,
R.
,
Stöhr
,
M.
,
Aigner
,
M.
, and
Bulat
,
G.
,
2013
, “
Experimental Study of Industrial Gas Turbine Flames Including Quantification of Pressure Influence on Flow Field, Fuel/Air Premixing and Flame Shape
,”
Combust. Flame
,
160
(10), pp.
2103
2118
.
26.
British Standard
,
1996
, “Gas Turbines. Exhaust Gas Emission—Part I: Measurement and Evaluation,”
British Standards Institution
, London, Standard No.
ISO 11042-1:1996
.https://www.iso.org/standard/19022.html
27.
Herning
,
F.
, and
Zipperer
,
L.
,
1936
, “
Calculation of the Viscosity of Technical Gas Mixtures From the Viscosity of the Individual Gases
,”
Gas Wasserfach
,
79
, p.
49
.
28.
Thermodynamics Research Center, 2016, “NIST Chemistry Web-Book,” National Institute of Standards and Technology, Boulder, CO, accessed Oct. 10, 2016, http://webbook.nist.gov/chemistry/
29.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F.
,
Meeks
,
E.
,
Moffat
,
H. K.
,
Lutz
,
A. E.
,
Dixon-Lewis
,
G.
,
Smooke
,
M. D.
,
Warnatz
,
J.
,
Evans
,
G. H.
,
Larson
,
R. S.
,
Mitchell
,
R. E.
,
Petzold
,
L. R.
,
Reynolds
,
W. C.
,
Caracotsios
,
M.
,
Stewart
,
W. E.
,
Glarborg
,
P.
,
Wang
,
C.
,
Adigun
,
O.
,
Houf
,
W. G.
,
Chou
,
C. P.
,
Miller
,
S. F.
,
Ho
,
P.
, and
Young
,
D. J.
, 2013, “CHEMKIN-PRO 15131,” Reaction Design, San Diego, CA.
30.
Kee
,
R. J.
,
Rupley
,
F. M.
,
Miller
,
J. A.
,
Coltrin
,
M. E.
,
Grcar
,
J. F.
,
Meeks
,
E.
,
Moffat
,
H. K.
,
Lutz
,
A. E.
,
Dixon-Lewis
,
G.
,
Smooke
,
M. D.
,
Warnatz
,
J.
,
Evans
,
G. H.
,
Larson
,
R. S.
,
Mitchell
,
R. E.
,
Petzold
,
L. R.
,
Reynolds
,
W. C.
,
Caracotsios
,
M.
,
Stewart
,
W. E.
,
Glarborg
,
P.
,
Wang
,
C.
, and
Adigun
,
O.
,
2000
, “CHEMKIN Collection Release 3.6,” Reaction Design, San Diego, CA.
31.
Davis
,
S. G.
,
Joshi
,
A. V.
,
Wang
,
H.
, and
Egolfopoulos
,
F.
,
2005
, “
An Optimized Kinetic Model of H2/CO Combustion
,”
Proc. Combust. Inst.
,
30
(1), pp.
1283
1292
.
32.
Niemann
,
U.
,
Seshadri
,
K.
, and
Williams
,
F.
,
2013
, “
Effect of Pressure on Structure and Extinction of Near-Limit Hydrogen Counterflow Diffusion Flames
,”
Proc. Combust. Inst.
,
34
(1), pp.
881
886
.
33.
Law
,
C. K.
,
2006
,
Combustion Physics
,
Cambridge University Press
, Cambridge,
UK
.
34.
Flohr
,
P.
, and
Pitsch
,
H.
,
2000
, “
A Turbulent Flame Speed Closure Model for LES of Industrial Burner Flows
,”
Center for Turbulence Research Summer Program
, July 4--15, pp. 169–179.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.390.4058&rep=rep1&type=pdf
35.
Bowman
,
C.
,
Frenklach
,
M.
,
Gardiner
,
W.
, and
Smith
,
G.
,
1999
, “The ‘GRIMech 3.0’ Chemical Kinetic Mechanism,” University of California Berkeley, Berkeley, CA, accessed June 9, 2015, http://www.me.berkeley.edu/gri_mech/
36.
Hu
,
E.
,
Li
,
X.
,
Meng
,
X.
,
Chen
,
Y.
,
Cheng
,
Y.
,
Xie
,
Y.
, and
Huang
,
Z.
,
2015
, “
Laminar Flame Speeds and Ignition Delay Times of Methane–Air Mixtures at Elevated Temperatures and Pressures
,”
Fuel
,
158
, pp.
1
10
.
37.
Carlsson
,
H.
,
Nordström
,
E.
,
Bohlin
,
A.
,
Wu
,
Y.
,
Zhou
,
B.
,
Li
,
Z.
,
Aldén
,
M.
,
Bengtsson
,
P.
, and
Bai
,
X.
,
2015
, “
Numerical and Experimental Study of Flame Propagation and Quenching of Lean Premixed Turbulent Low Swirl Flames at Different Reynolds Numbers
,”
Combust. Flame
,
162
(6), pp.
2582
2591
.
38.
Han
,
Z.
, and
Hochgreb
,
S.
,
2015
, “
The Response of Stratified Swirling Flames to Acoustic Forcing: Experiments and Comparison to Model
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3309
3315
.
39.
Kobayashi
,
H.
,
Yata
,
S.
,
Ichikawa
,
Y.
, and
Ogami
,
Y.
,
2009
, “
Dilution Effects of Superheated Water Vapor on Turbulent Premixed Flames at High Pressure and High Temperature
,”
Proc. Combust. Inst.
,
32
(2), pp.
2607
2614
.
40.
Amato
,
A.
,
Hudak
,
B.
,
D'Souza
,
P.
,
D'Carlo
,
P.
,
Noble
,
D.
,
Scarborough
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Measurements and Analysis of CO and O2 Emissions in CH4/CO2/O2 Flames
,”
Proc. Combust. Inst.
,
33
(2), pp.
3399
3405
.
41.
Furuhata
,
T.
,
Kawata
,
T.
,
Mizukoshi
,
N.
, and
Arai
,
M.
,
2010
, “
Effect of Steam Addition Pathways on NO Reduction Characteristics in a Can-Type Spray Combustor
,”
Fuel
,
89
(10), pp.
3119
3126
.
42.
Biagioli
,
F.
, and
Güthe
,
F.
,
2007
, “
Effect of Pressure and Fuel–Air Unmixedness on NOx Emissions From Industrial Gas Turbine Burners
,”
Combust. Flame
,
151
(1–2), pp.
274
288
.
43.
Zhao
,
D.
,
Yamashita
,
H.
,
Kitagawa
,
K.
,
Arai
,
N.
, and
Furuhata
,
T.
,
2002
, “
Behavior and Effect on NOx Formation of OH Radical in Methane-Air Diffusion Flame With Steam Addition
,”
Combust. Flame
,
130
(4), pp.
352
360
.
You do not currently have access to this content.