One of the main design decisions in the development of low-speed axial fans is the right choice of the blade loading versus rotational speed, since a target pressure rise could either be achieved with a slow spinning fan and high blade loading or a fast spinning fan with less flow turning in the blade passages. Both the blade loading and the fan speed have an influence on the fan performance and the fan acoustics, and there is a need to find the optimum choice in order to maximize efficiency while minimizing noise emissions. This paper addresses this problem by investigating five different fans with the same pressure rise but different rotational speeds in the design point (DP). In the first part of the numerical study, the fan design is described and steady-state Reynolds-averaged Navier–Stokes (RANS) simulations are conducted in order to identify the performance of the fans in the DP and in off-design conditions. The investigations show the existence of an optimum in rotational speed regarding fan efficiency and identify a flow separation on the hub causing a deflection of the outflow in radial direction as the main loss source for slow spinning fans with high blade loadings. Subsequently, large eddy simulations (LES) along with the acoustic analogy of Ffowcs Williams and Hawkings (FW–H) are performed in the DP to identify the main noise sources and to determine the far-field acoustics. The identification of the noise sources within the fans in the near-field is performed with the help of the power spectral density (PSD) of the pressure. In the far-field, the sound power level (SWL) is computed using different parts of the fan surface as FW–H sources. Both methods show the same trends regarding noise emissions and allow for a localization of the noise sources. The flow separation on the hub is one of the main noise sources along with the tip vortex with an increase in its strength toward lower rotational speeds and higher loading. Furthermore, a horseshoe vortex detaching from the rotor leading edge and impinging on the pressure side as well as the turbulent boundary layer on the suction side represent significant noise sources. In the present investigation, the maximum in efficiency coincides with the minimum in noise emissions.

References

References
1.
Cordier
,
O.
,
1955
,
Ähnlichkeitsbedingungen für Strömungsmaschinen
, VDI-Verlag GmbH, Düsseldorf, Germany, p.
85
.
2.
Bianchi
,
S.
,
Corsini
,
A.
, and
Sheard
,
A. G.
,
2013
, “
A Critical Review of Passive Noise Control Techniques in Industrial Fans
,”
ASME
Paper No. GTP-13-1352.
3.
Longhouse
,
R. E.
,
1976
, “
Noise Mechanism Separation and Design Considerations for Low Tip-Speed, Axial-Flow Fans
,”
J. Sound Vib.
,
48
(
4
), pp.
461
474
.
4.
Sharland
, I
. J.
,
1964
, “
Source of Noise in Axial Flow Fans
,”
J. Sound Vib.
,
1
(
3
), pp.
302
322
.
5.
Moreau
,
S.
, and
Roger
,
M.
,
2007
, “
Competing Broadband Noise Mechanisms in Low-Speed Axial Fans
,”
AIAA J.
,
45
(
1
), pp.
48
57
.
6.
Wang
,
J.
,
Huang
,
L.
, and
Cheng
,
L.
,
2004
, “
A Study of Active Tonal Noise Control for a Small Axial Flow Fan
,”
J. Acoust. Soc. Am.
,
45
(
1
), pp.
734
743
.
7.
Moreau
,
A.
, and
Guerin
,
S.
,
2016
, “
The Impact of Low-Speed Fan Design on Noise: An Exploratory Study
,”
ASME J. Turbomach.
,
138
(
8
), p.
081006
.
8.
Bamberger
,
K.
, and
Carolus
,
T.
,
2013
, “
Impact of Different Aerodynamic Optimization Strategies on the Sound Emitted by Axial Fans
,”
AIAA
Paper No. 2013-2241.
9.
Stadler
,
M.
,
Schmitz
,
M. B.
,
Laufer
,
W.
, and
Ragg
,
P.
,
2014
, “
Inverse Aeroacoustic Design of Axial Fans Using Genetic Optimization and the Lattice-Boltzmann Method
,”
ASME J. Turbomach.
,
136
(
4
), p.
041011
.
10.
Ffowcs Williams
,
J. E.
, and
Hawkings
,
D. L.
,
1969
, “
Sound Generation by Turbulence und Surfaces in Arbitrary Motion
,”
Philos. Trans. R. Soc. London Ser. A
,
264
(
1151
), pp.
321
342
.
11.
Pogorelov
,
A.
,
Meinke
,
M.
, and
Schroede
,
W.
,
2016
, “
Impact of Periodic Boundary Conditions on the Flow Field in an Axial Fan
,”
AIAA
Paper No. 2016-0610.
12.
Greschner
,
B.
,
Neuber
,
G.
, and
Thiele
,
F.
,
2013
, “
Simulation of Rotor Tip Leakage Vortex Broadband Noise Using IDDES
,”
AIAA
Paper No. 2013-2152.
13.
Boudet
,
J.
,
Cahuzac
,
A.
,
Kausche
,
P.
, and
Jacob
,
M. C.
,
2015
, “
Zonal Large-Eddy Simulation of a Fan Tip-Clearance Flow, With Evidence of Vortex Wandering
,”
ASME J Turbomach
,
137
(
6
), p.
061001
.
14.
Vogt
,
D.
,
2014
, “
Thermische Strömungsmaschinen
,” Institute of Thermal Turbomachinery and Machinery Laboratory (ITSM), University of Stuttgart, Stuttgart, Germany.
15.
Ladson
,
C. L.
,
Brooks
,
C. W.
,
Hill
,
A. S.
, and
Sproles
,
D. W.
,
1996
, “
Computer Program to Obtain Ordinates for NACA Airfoils
,” National Aeronautics and Space Administration, Langley Research Center, Hampton, VA, Report No.
NASA TM-4741
.https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19970008124.pdf
16.
CD-Adapco
,
2016
, “
STAR-CCM+ Documentation, Version 11.04
,” CD-Adapco, Melville, NY.
17.
Reese
,
H.
, and
Carolus
,
T.
,
2008
, “
Axial Fan Noise: Towards Sound Prediction Based on Numerical Unsteady Flow Data—A Case Study
,”
Acoustics'08 Paris
, Paris, France, June 29–July 4, pp.
4069
4074
.http://www.mb.uni-siegen.de/iftsm/forschung/c2008_reese_carolus_euronoise08.pdf
18.
Wagner
,
C. A.
,
Hüttl
,
T.
, and
Sagaut
,
P.
,
2007
,
Large-Eddy Simulation for Acoustics
,
Cambridge University Press
, New York.
19.
Haller
,
G.
,
2005
, “
An Objective Definition of a Vortex
,”
J. Fluid Mech.
,
525
, pp.
1
26
.
20.
ISO
,
2011
, “
Akustik—Bestimmung der Schalleistungs- und Schallenergiepegel von Geräuschquellen aus Schalldruckmessungen—Hüllflächenverfahren der Genauigkeitsklasse 2 für ein im Wesentlichen freies Schallfeld über einer reflektierenden Ebene
,” International Organization for Standardization, Geneva, Switzerland, Standard No. DIN EN ISO 3744.
21.
Magne
,
S.
,
Moreau
,
S.
, and
Berry
,
A.
,
2015
, “
Subharmonic Tonal Noise From Backflow Vortices Radiated by a Low-Speed Ring Fan in Uniform Inlet Flow
,”
J. Acoust. Soc. Am.
,
137
(
1
), pp.
228
237
.
22.
Sanjose
,
M.
,
Lallier-Daniels
,
D.
, and
Moreau
,
S.
,
2015
, “
Aeroacoustic Analysis of a Low-Subsonic Axial Fan
,”
ASME
Paper No. GT2015-43737.
You do not currently have access to this content.