The component mode synthesis (CMS) based on the Craig–Bampton (CB) method has two strong limitations that appear when the number of the interface degrees-of-freedom (DOFs) is large. First, the reduced-order model (ROM) obtained is overweighed by many unnecessary DOF. Second, the reduction step may become extremely time consuming. Several interface reduction (IR) techniques addressed successfully the former problem, while the latter remains open. In this paper, we tackle this latter problem through a simple IR technique based on an a-priory choice of the interface modes. An efficient representation of the interface displacement field is achieved adopting a set of orthogonal basis functions determined by the interface geometry. The proposed method is compared with other existing IR methods on a case study regarding a rotor blade of an axial compressor.

References

1.
de Klerk
,
D.
,
Rixen
,
D. J.
, and
Voormeeren
,
S. N.
,
2008
, “
General Framework for Dynamic Substructuring: History, Review and Classification of Techniques
,”
AIAA J.
,
46
(
5
), pp.
1169
1181
.
2.
Bampton, M. C. C., and Craig, R. R.,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(7), pp.
1313
1319
.https://arc.aiaa.org/doi/abs/10.2514/3.4741
3.
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2001
, “
Component-Mode-Based Reduced Order Modeling Techniques for Mistuned Bladed Disks—Part I: Theoretical Models
,”
ASME J. Eng. Gas Turbines Power
,
123
(1), pp.
89
99
.
4.
Castanier
,
M. P.
,
Tan
,
Y.-C.
, and
Pierre
,
C.
,
2001
, “
Characteristic Constraint Modes for Component Mode Synthesis
,”
AIAA J.
,
39
(6), pp.
1182
1187
.
5.
Brahmi
,
K.
,
Bouhaddi
,
N.
, and
Fillod
,
R.
,
1995
, “
Reduction of Junction Degrees of Freedom in Certain Methods of Dynamic Substructure Synthesis
,”
13th International Modal Analysis Conference
(
IOMAC
), Nashville, TN, Feb. 13–16, pp.
1763
1769
.https://www.researchgate.net/publication/241271306_Reduction_of_Junction_Degrees_of_Freedom_in_Certain_Methods_of_Dynamic_Substructure_Synthesis
6.
Tran
,
D.-M.
,
2001
, “
Component Mode Synthesis Methods Using Interface Modes. Application to Structures With Cyclic Symmetry
,”
Comput. Struct.
,
79
(2), pp.
209
222
.
7.
Hong
,
S.-K.
,
Epureanu
,
B. I.
, and
Castanier
,
M. P.
,
2013
, “
Next-Generation Parametric Reduced-Order Models
,”
Mech. Sys. Sig. Proc.
,
37
(1–2), pp.
403
421
.
8.
Balmès
,
E.
,
1996
, “
Use of Generalized Interface Degrees of Freedom in Component Mode Synthesis
,” 14th International Modal Analysis Conference (
IMAC
), Dearborn, MI, Feb. 12–15, pp.
204
210
.http://www.sdtools.com/pdf/IMAC96int.pdf
9.
Aoyama
,
Y.
, and
Yagawa
,
G.
,
2001
, “
Component Mode Synthesis for Large-Scale Structural Eigenanalysis
,”
Comput. Struct.
,
79
(6), pp.
605
615
.
10.
Donders
,
S.
,
Pluymers
,
B.
,
Ragnarsson
,
P.
,
Hadjit
,
R.
, and
Desmet
,
W.
,
2010
, “
The Wave-Based Substructuring Approach for the Efficient Description of Interface Dynamics in Substructuring
,”
J. Sound Vib.
,
329
(8), pp.
1062
1080
.
11.
Lindberg
,
E.
,
Hörlin
,
N.-E.
, and
Göransson
,
P.
,
2013
, “
Component Mode Synthesis Using Undeformed Interface Coupling Modes to Connect Soft and Stiff Substructures
,”
Shock Vib.
,
20
(
1
), pp.
157
170
.
12.
Holzwarth
,
P.
, and
Eberhard
,
P.
,
2015
, “
Interface Reduction for CMS Methods and Alternative Model Order Reduction
,”
IFAC-Pap. OnLine
,
48
(1), pp.
254
259
.
13.
Polizzi
,
E.
,
2009
, “
Density-Matrix-Based Algorithms for Solving Eigenvalue Problems
,”
Phys. Rev. B.
,
79
(11), pp.
115
112
.
14.
Petra
,
C. G.
,
Schenk
,
O.
,
Lubin
,
M.
, and
Gärtner
,
K.
,
2014
, “
An Augmented Incomplete Factorization Approach for Computing the Schur Complement in Stochastic Optimization
,”
SIAM J. Sci. Comput.
,
36
(
2
), pp.
C139
C162
.
You do not currently have access to this content.