This paper deals with the estimation of forcing functions on a mistuned bladed rotor from measurements of harmonic response via Kalman filter (KF) in time domain. An unique feature of this approach is that the number of estimated variables can be far greater than the number of measurements. The robustness of this method to measurement errors is shown. It is also shown that direct prediction of amplitude and phase of sinusoidal force vector from input/output frequency response function has a large amount of errors in the presence of unavoidable measurement noise. Numerical examples contain both frequency mistuning and geometric mistuning.

References

References
1.
Sinha
,
A.
,
2009
, “
Reduced-Order Model of a Bladed Rotor With Geometric Mistuning
,”
ASME J. Turbomach.
,
131
(
3
), p.
031007
.
2.
Bhartiya
,
Y.
, and
Sinha
,
A.
,
2013
, “
Reduced Order Model of a Bladed Rotor With Geometric Mistuning Via Estimated Deviations in Mass and Stiffness Matrices
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
052501
.
3.
Vishwakarma
,
V.
,
Sinha
,
A.
,
Bhartiya
,
Y.
, and
Brown
,
J. M.
,
2015
, “
Modified Modal Domain Analysis of a Bladed Rotor Using Coordinate Measurement Machine Data on Geometric Mistuning
,”
ASME J. Eng. Gas Turbines Power
,
137
(
4
), p.
042502
4.
Ekici
,
K.
, and
Hall
,
K.
,
2008
, “
Nonlinear Frequency Domain Analysis of Unsteady Flows in Turbomachinery With Multiple Excitation Frequencies
,”
AIAA J.
,
46
(
8
), pp.
1912
1920
.
5.
Schonenborn
,
H.
, and
Ashcroft
,
G.
,
2014
, “Comparison of Non-Linear Linearized CFD Analysis of the Stator-Rotor Interaction of a Compressor Stage,”
ASME
Paper No. GT2014-25256.
6.
Besem
,
F. M.
,
Kielb
,
R. E.
, and
Key
,
N. L.
,
2015
, “
Forced Response Sensitivity of a Mistuned Rotor From an Embedded Compressor Stage
,”
ASME J. Turbomach.
,
138
(
3
), p.
031002
.
7.
Besem
,
F. M.
,
Kielb
,
R. E.
,
Galpin
,
P.
,
Zori
,
L.
, and
Key
,
N. L.
,
2016
, “
Mistuned Forced Response Predictions of an Embedded Rotor in a Multistage Compressor
,”
ASME J. Turbomach.
,
138
(
6
), p.
061003
.
8.
Warren
,
C.
,
Niezrecki
,
C.
, and
Avitabile
,
P.
,
2010
, “Optical Non-Contacting Vibration Measurement of Rotating Turbine Blades II,” A Conference on Structural Dynamics (
IMAC-XXVIII
), Jacksonville, FL, Feb. 1–4, pp.
39
44
.http://www.am.chalmers.se/~thab/IMAC/2010/PDFs/Papers/s08p004.pdf
9.
Vishwakarma
,
V.
, and
Sinha
,
A.
,
2015
, “
Estimation of Forcing Function for a Geometrically Mistuned Bladed Rotor Via Modified Modal Domain Analysis
,”
ASME J. Eng. Gas Turbines Power
,
138
(
4
), p.
042507
.
10.
Sinha
,
A.
,
2007
,
Linear Systems: Optimal and Robust Control
,
CRC Press
,
Boca Raton, FL
.
11.
Kielb
,
R. E.
,
Feiner
,
D. M.
,
Griffin
,
J. H.
, and
Miyakozawa
,
2004
, “Flutter of Mistuned Bladed Disks and Blisks With Aerodynamic and FMM Structural Coupling,”
ASME
Paper No. GT2004-54315.
12.
Kielb
,
R. E.
,
2015
, private communication.
13.
Ralston
,
A.
, and
Rabinowitz
,
P.
,
1978
,
A First Course in Numerical Analysis
,
McGraw-Hill
,
New York
.
14.
Sinha
,
A.
,
Hall
,
B.
,
Cassenti
,
B.
, and
Hilbert
,
G.
,
2008
, “
Vibratory Parameters of Blades From Coordinate Measurement Machine Data
,”
ASME J. Turbomach.
,
130
(
1
), p.
011013
.
You do not currently have access to this content.