The reliability of gas turbine (GT) health state monitoring and forecasting depends on the quality of sensor measurements directly taken from the unit. Outlier detection techniques have acquired a major importance, as they are capable of removing anomalous measurements and improve data quality. To this purpose, statistical parametric methodologies are widely employed thanks to the limited knowledge of the specific unit required to perform the analysis. The backward and forward moving window (BFMW) k–σ methodology proved its effectiveness in a previous study performed by the authors, to also manage dynamic time series, i.e., during a transient. However, the estimators used by the k–σ methodology are usually characterized by low statistical robustness and resistance. This paper aims at evaluating the benefits of implementing robust statistical estimators for the BFMW framework. Three different approaches are considered in this paper. The first methodology, k-MAD, replaces mean and standard deviation (SD) of the k–σ methodology with median and mean absolute deviation (MAD), respectively. The second methodology, σ-MAD, is a novel hybrid scheme combining the k–σ and the k-MAD methodologies for the backward and the forward windows, respectively. Finally, the biweight methodology implements biweight mean and biweight SD as location and dispersion estimators. First, the parameters of these methodologies are tuned and the respective performance is compared by means of simulated data. Different scenarios are considered to evaluate statistical efficiency, robustness, and resistance. Subsequently, the performance of these methodologies is further investigated by injecting outliers in field datasets taken on selected Siemens GTs. Results prove that all the investigated methodologies are suitable for outlier identification. Advantages and drawbacks of each methodology allow the identification of different scenarios in which their application can be most effective.

References

References
1.
Roumeliotis
,
I.
,
Aretakis
,
N.
, and
Alexiou
,
A.
,
2016
, “
Industrial Gas Turbine Health and Performance Assessment With Field Data
,”
ASME
Paper No. GT2016-57722.
2.
Tsoutsanis
,
E.
,
Meskin
,
N.
,
Benammar
,
M.
, and
Khashayar
,
K.
,
2015
, “
Transient Gas Turbine Performance Diagnostics Through Nonlinear Adaptation of Compressor and Turbine Maps
,”
ASME J. Eng. Gas Turbines Power
,
137
(
9
), p.
091201
.
3.
Jiang
,
X.
, and
Foster
,
C.
,
2014
, “
Plant Performance Monitoring and Diagnostics: Remote, Real-Time and Automation
,”
ASME
Paper No. GT2014-27314.
4.
Venturini
,
M.
, and
Therkorn
,
D.
,
2013
, “
Application of a Statistical Methodology for Gas Turbine Degradation Prognostics to Alstom Field Data
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091603
.
5.
Cavarzere
,
A.
, and
Venturini
,
M.
,
2011
, “
Application of Forecasting Methodologies to Predict Gas Turbine Behavior Over Time
,”
ASME J. Eng. Gas Turbines Power
,
134
(
1
), p.
012401
.
6.
Lanzante
,
J.
,
1996
, “
Resistant, Robust and Non-Parametric Techniques for the Analysis of Climate Data: Theory and Examples, Including Applications to Historical Radiosonde Station Data
,”
Int. J. Climatol.
,
16
(
11
), pp.
1197
1226
.
7.
Van Paridon
,
A.
,
Bacic
,
M.
, and
Ireland
,
P. T.
,
2016
, “
Kalman Filter Development for Real Time Proper Orthogonal Decomposition Disc Temperature Model
,”
ASME
Paper No. GT2016-56330.
8.
Hurst
,
A. M.
,
Carter
,
S.
,
Firth
,
D.
,
Szary
,
A.
, and
vanDeWeert, J.
,
2015
, “
Real-Time, Advanced Electrical Filtering for Pressure Transducer Frequency Response Correction
,”
ASME
Paper No. GT2015-42895.
9.
Gutierrez
,
L. A.
,
Pezzini
,
P.
,
Tucker
,
D.
, and
Banta
,
L.
,
2014
, “
Smoothing Techniques for Real-Time Turbine Speed Sensors
,”
ASME
Paper No. GT2014-25407.
10.
Dewallef
,
P.
, and
Borguet
,
S.
,
2013
, “
A Methodology to Improve the Robustness of Gas Turbine Engine Performance Monitoring Against Sensor Faults
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
051601
.
11.
Gomez
,
J.
,
2011
,
Kalman Filtering
,
Nova Science Publishers
,
Hauppauge, NY
.
12.
Pinelli
,
M.
,
Venturini
,
M.
, and
Burgio
,
M.
,
2003
, “
Statistical Methodologies for Reliability Assessment of Gas Turbine Measurements
,”
ASME
Paper No. GT2003-38407.
13.
Martin
,
R.
, and
Thomson
,
D.
,
1982
, “
Robust-Resistant Spectrum Estimation
,”
Proc. IEEE
,
70
(
9
), pp.
1097
1115
.
14.
Hampel
,
F.
,
1974
, “
The Influence Curve and Its Role in Robust Estimation
,”
J. Am. Stat. Assoc.
,
69
(
346
), pp.
383
393
.
15.
Bhattacharya
,
G.
,
Ghosh
,
K.
, and
Chowdhury
,
A.
,
2015
, “
Outlier Detection Using Neighborhood Rank Difference
,”
Pattern Recognit. Lett.
,
60–61
, pp.
24
31
.
16.
Takahashi
,
T.
,
Tomioka
,
R.
, and
Yamanishi
,
K.
,
2014
, “
Discovering Emerging Topics in Social Streams Via Link-Anomaly Detection
,”
IEEE Trans. Knowl. Data Eng.
,
26
(
1
), pp.
120
130
.
17.
Takeuchi
,
J.
, and
Yamanishi
,
K.
,
2006
, “
A Unifying Framework for Detecting Outliers and Change Points From Time Series
,”
IEEE Trans. Knowl. Data Eng.
,
18
(
4
), pp.
482
492
.
18.
Xu
,
S.
,
Baldea
,
M.
,
Edgar
,
T.
,
Wojsznis
,
W.
,
Blevins
,
T.
, and
Nixon
,
M.
,
2014
, “
An Improved Methodology for Outlier Detection in Dynamic Datasets
,”
AIChE J.
,
61
(
2
), pp.
419
433
.
19.
Ceschini
,
G.
,
Gatta
,
N.
,
Venturini
,
M.
,
Hubauer
,
T.
, and
Murarasu
,
A.
,
2017
, “
Optimization of Statistical Methodologies for Anomaly Detection in Gas Turbine Dynamic Time Series
,”
ASME
Paper No. GT2017-63409.
20.
Ceschini
,
G.
,
Gatta
,
N.
,
Venturini
,
M.
,
Hubauer
,
T.
, and
Murarasu
,
A.
,
2017
, “
A Comprehensive Approach for Detection, Classification and Integrated Diagnostics of Gas Turbine Sensors (DCIDS)
,”
ASME
Paper No. GT2017-63411.
21.
Huber
,
P.
,
1981
,
Robust Statistics
,
Wiley
,
New York
.
22.
Rousseeuw
,
P.
, and
Croux
,
C.
,
1993
, “
Alternatives to the Median Absolute Deviation
,”
J. Am. Stat. Assoc.
,
88
(
424
), pp. 1273–1283.
23.
Kafadar
,
K.
,
1983
, “
The Efficiency of the Biweight as a Robust Estimator of Location
,”
J. Res. Natl. Bur. Stand.
,
88
(
2
), pp. 105–116.
24.
Leys
,
C.
,
Ley
,
C.
,
Klein
,
O.
,
Bernard
,
P.
, and
Licata
,
L.
,
2013
, “
Detecting Outliers: Do Not Use Standard Deviation Around the Mean, Use Absolute Deviation Around the Median
,”
J. Exp. Soc. Psychol.
,
49
(
4
), pp.
764
766
.
25.
Yahaya
,
S.
,
Othman
,
A.
, and
Keselman
,
H.
,
2004
, “
Testing the Equality of Location Parameters for Skewed Distributions Using S1 With High Breakdown Robust Scale Estimators
,”
Statistics for Industry and Technology
, Birkhäuser Verlag, Basel, Switzerland pp.
319
328
.
26.
Hoaglin
,
D.
,
Mosteller
,
F.
, and
Tukey
,
J.
,
1983
,
Understanding Robust and Exploratory Data Analysis
,
Wiley
,
New York
.
27.
Young
,
G. A.
, and
Smith
,
R. L.
,
2005
,
Essential of Statistical Inference
,
Cambridge University Press
,
Cambridge, UK
.
28.
Sharma
,
A.
,
Golubchik
,
L.
, and
Govindan
,
R.
,
2010
, “
Sensor Faults: Detection Methods and Prevalence in Real-World Datasets
,”
ACM Trans. Sens. Networks
,
6
(
3
), p. 23.
You do not currently have access to this content.