New experimental data are provided for full-coverage effusion cooling and impingement array cooling, as applied simultaneously onto the respective external and internal surfaces of a single instrumented test plate. For the effusion cooled surface, presented are spatially resolved distributions of surface adiabatic film cooling effectiveness, and surface heat transfer coefficients. For the impingement cooled surface, presented are spatially resolved distributions of surface Nusselt numbers. Impingement jet arrays at different jet Reynolds numbers, from 7930 to 18,000, are employed. Experimental data are given for spanwise and streamwise impingement hole spacing such that coolant jet hole centerlines are located midway between individual effusion hole entrances. For the effusion cooling, streamwise hole spacing and spanwise hole spacing (normalized by effusion hole diameter) are 15 and 4, respectively. Effusion hole angle is 25 deg, and effusion plate thickness is 3.0 effusion hole diameters. In regard to the impingement cooled cold-side surface of the effusion plate, associated surface Nusselt number variations provide evidence that impingement jets are turned and redirected as they cross the impingement passage, just prior to the entrance of coolant into individual effusion holes. In regard to the effusion cooled hot-side surface of the effusion plate, when compared at particular values of injectant and mainstream Reynolds numbers, streamwise location x/de and blowing ratio BR, significantly increased thermal protection is provided when the effusion coolant is provided by an array of impingement cooling jets (compared to a cross flow channel supply arrangement).

References

References
1.
Andrews
,
G. E.
,
Asere
,
A. A.
,
Husain
,
C. I.
,
Mkpadi
,
M. C.
, and
Nazari
,
A.
,
1988
, “
Impingement/Effusion Cooling: Overall Wall Heat Transfer
,”
ASME
Paper No. 88-GT-290.
2.
Al Dabagh
,
A. M.
,
Andrews
,
G. E.
,
Abdul Husain
,
R. A. A.
,
Husain
,
C. I.
,
Nazari
,
A.
, and
Wu
,
J.
,
1990
, “
Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient
,”
ASME J. Turbomach.
,
112
(
3
), pp.
467
476
.
3.
Andrews
,
G. E.
,
Al-Dabagh
,
A. M.
,
Asere
,
A. A.
,
Bazdidi-Tehrani
,
F.
,
Mkpadi
,
M. C.
, and
Nazari
,
A.
,
1992
, “
Impingement/Effusion Cooling
,”
AGARD Conference Proceedings 527, 80th Symposium of the Propulsion and Energetics Panel on Heat Transfer and Cooling in Gas Turbines
, Antalya, Turkey, Oct. 12–16, p. 30.
4.
Andrews
,
G. E.
, and
Nazari
,
A.
,
1999
, “
Impingement/Effusion Cooling: Influence of Number of Holes on the Cooling Effectiveness for an Impingement X/D of 10.5 and Effusion X/D of 7.0
,”
GTSJ International Gas Turbine Congress
,
Kobe, Japan, Nov. 14–19, Paper No. IGTC TS-51.
5.
Cho
,
H. H.
, and
Rhee
,
D. H.
,
2001
, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling Systems
,”
ASME J. Turbomach.
,
123
(
3
), pp.
601
608
.
6.
Hong
,
S. K.
,
Rhee
,
D. H.
, and
Cho
,
H. H.
,
2007
, “
Effects of Fin Shapes and Arrangements on Heat Transfer for Impingement/Effusion Cooling With Cross-Flow
,”
ASME J. Heat Transfer
,
129
(
12
), pp.
1697
1707
.
7.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Goldstein
,
R. J.
,
2008
, “
Effects of Hole Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Hole Spacing
,”
ASME J. Turbomach.
,
130
(
4
), p. 041003.
8.
Shi
,
B.
,
Li
,
J.
,
Li
,
M.
,
Ren
,
J.
, and
Jiang
,
H.
,
2016
, “
Cooling Effectiveness on a Flat Plate With Both Film Cooling and Impingement Cooling in Hot Gas Conditions
,”
ASME
Paper No. GT2016-57224.
9.
El-Jummah
,
A. M.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2016
, “
Impingement/Effusion Cooling Wall Heat Transfer: Conjugate Heat Transfer Computational Fluid Dynamic Predictions
,”
ASME
Paper No. GT2016-56961.
10.
El-Jummah
,
A. M.
,
Nazari
,
A.
,
Andrews
,
G. E.
, and
Staggs
,
J. E. J.
,
2017
, “
Impingement/Effusion Cooling Wall Heat Transfer: Reduced Number of Impingement Jet Holes Relative to the Effusion Holes
,”
ASME
Paper No. GT2017-63494.
11.
Oguntade
,
H. I.
,
Andrews
,
G. E.
,
Burns
,
A. D.
,
Ingham
,
D. B.
, and
Pourkashanian
,
M.
,
2017
, “
Impingement/Effusion Cooling With Low Coolant Mass Flow
,”
ASME
Paper No. GT2017-63484.
12.
Rogers
,
N.
,
Ren
,
Z.
,
Buzzard
,
W.
,
Sweeney
,
B.
,
Tinker
,
N.
,
Ligrani
,
P. M.
,
Hollingsworth
,
K. D.
,
Liberatore
,
F.
,
Patel
,
R.
,
Ho
,
S.
, and
Moon
,
H.-K.
,
2016
, “
Effects of Double Wall Cooling Configuration and Conditions on Performance of Full Coverage Effusion Cooling
,”
ASME
Paper No. GT2016-56515.
13.
Ren
,
Z.
,
Vanga
,
S. R.
,
Rogers
,
N.
,
Ligrani
,
P. M.
,
Hollingsworth
,
K. D.
,
Liberatore
,
F.
,
Patel
,
R.
,
Srinivasan
,
R.
, and
Ho
,
Y.
,
2017
, “
Internal and External Cooling of a Full Coverage Effusion Cooling Plate: Effects of Double Wall Cooling Configuration and Conditions
,”
ASME
Paper No. GT2017-64921.
14.
Hay
,
J. L.
, and
Hollingsworth
,
D. K.
,
1998
, “
Calibration of Micro-Encapsulated Liquid Crystals Using Hue Angle and a Dimensionless Temperature
,”
Exp. Therm. Fluid Sci.
,
18
(3), pp.
251
257
.
15.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng.
,
75
, pp.
3
8
.
16.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
(
1
), pp.
3
17
.
You do not currently have access to this content.