This paper presents the development, implementation, and validation of a simplified dynamic modeling approach to describe solid oxide fuel cell gas turbine (SOFC/GT) hybrid systems (HSs) in three real emulator test rigs installed at University of Genoa (Italy), German Aerospace Center (DLR, Germany), and National Energy Technology Laboratory (NETL, USA), respectively. The proposed modeling approach is based on an experience-based simplification of the physical problem to reduce model computational efforts with minimal expense of accuracy. Traditional high fidelity dynamic modeling requires specialized skills and significant computational resources. This innovative approach, on the other hand, can be easily adapted to different plant configurations, predicting the most relevant dynamic phenomena with a reduced number of states: such a feature will allow, in the near future, the model deployment for monitoring purposes or advanced control scheme applications (e.g., model predictive control). The three target systems are briefly introduced and dynamic situations analyzed for model tuning, first, and validation, then. Relevance is given to peculiar transients where the model shows its reliability and its weakness. Assumptions introduced during model definition for the three different test rigs are discussed and compared. The model captured significant dynamic behavior in all analyzed systems (in particular those regarding the GT) and showed influence of signal noise on some of the SOFC computed outputs.

References

References
1.
FuelCell Energy, 2016, “
Distributed Fuel Cell-Energy Recovery Generator (DFC-ERG) by Fuel Cell Energy
,” FuelCell Energy, Inc., Danbury, CT, accessed Sept. 29, 2016, www.fuelcellenergy.com
2.
Kabata
,
T.
,
Nishiura
,
M.
,
Tomida
,
K.
,
Koga
,
S.
, and
Matake
,
N.
,
2008
,
Fuel Cell Seminar & Exposition
, The Electrochemical Society, Pennington, NJ, pp.
263
267
.
3.
Mitsubishi Heavy Industries
,
2015
, “
Demonstration of SOFC-Micro Gas Turbine (MGT) Hybrid Systems for Commercialization
,”
Tech. Rev. Mitsubishi Heavy Ind.
,
52
(
4
), pp. 47–52.https://www.mhi.co.jp/technology/review/pdf/e524/e524047.pdf
4.
Owens
,
B.
, and
McGuinness
,
J.
,
2015
, “GE-Fuel Cells: The Power of Tomorrow,” General Electric, Boston, MA, accessed Nov. 20, 2016, https://www.ge.com/sites/default/files/GE_FuelCells.pdf
5.
Zaccaria
,
V.
,
Tucker
,
D.
, and
Traverso
,
A.
,
2016
, “
Transfer Function Development for SOFC/GT Hybrid Systems Control Using Cold Air Bypass
,”
Appl. Energy
,
165
, pp.
695
706
.
6.
Tucker
,
D.
,
Lawson
,
L.
, and
Gemmen
,
R.
,
2003
, “Preliminary Results of a Cold Flow Test in a Fuel Cell Gas Turbine Hybrid Simulation Facility,”
ASME
Paper No. GT-2003-38460.
7.
Ferrari
,
M. L.
,
2015
, “
Advanced Control Approach for Hybrid Systems Based on Solid Oxide Fuel Cells
,”
Appl. Energy
,
145
, pp.
364
373
. pp
8.
Larosa
,
L.
,
Traverso
,
A.
,
Ferrari
,
M. L.
, and
Zaccaria
,
V.
,
2014
, “
Pressurized SOFC Hybrid Systems: Control System Study and Experimental Verification
,”
ASME J. Gas Turbine Power
,
137
(
3
), p.
31602
.
9.
Ferrari
,
M. L.
,
Pascenti
,
M.
,
Bertone
,
R.
, and
Magistri
,
L.
,
2009
, “
Hybrid Simulation Facility Based on Commercial 100 kWe Micro Gas Turbine
,”
ASME J. Fuel Cell Sci. Technol.
,
6
(3), p. 031008.
10.
Hohloch
,
M.
,
Huber
,
A.
, and
Aigner
,
M.
,
2014
, “Experimental Investigation of a SOFC/MGT Hybrid Power Plant Test Rig—Impact and Characterization of Coupling Elements,”
ASME
Paper No. GT2014-25918.
11.
Hohloch
,
M.
,
Huber
,
A.
, and
Aigner
,
M.
,
2016
, “Experimental Investigation of a SOFC/MGT Hybrid Power Plant Test Rig—Impact and Characterization of a Fuel Cell Emulator,”
ASME
Paper No. GT2016-57747.
12.
Wang
,
K.
,
Hissel
,
D.
,
Péra
,
M. C.
,
Steiner
,
N.
,
Marra
,
D.
,
Sorrentino
,
M.
,
Pianese
,
C.
,
Monteverde
,
M.
,
Cardone
,
P.
, and
Saarinen
,
J.
,
2011
, “
A Review on Solid Oxide Fuel Cell Models
,”
Int. J. Hydrogen Energy
,
36
(12), pp.
7212
7228
.
13.
Kim
,
S.
,
Pilidis
,
P.
, and
Yin
,
J.
,
2000
, “
Gas Turbine Dynamic Simulation Using Simulink®
,”
SAE
Paper No. 2000-01-3647.
14.
Roberts
,
R.
,
Brouwer
,
J.
,
Jabbari
,
F.
,
Junker
,
T.
, and
Hossein
,
G.-A.
,
2006
, “
Control Design of an Atmospheric Solid Oxide Fuel Cell/Gas Turbine Hybrid System: Variable versus Fixed Speed Gas Turbine Operation
,”
J. Power Sources
,
161
(1), pp.
484
491
.
15.
Ferrari
,
M. L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2004
, “Transient Analysis of Solid Oxide Fuel Cell Hybrids—Part B: Anode Recirculation Model,”
ASME
Paper No. GT2004-53716.
16.
Ferrari
,
M. L.
,
Magistri
,
L.
,
Traverso
,
A.
, and
Massardo
,
A. F.
,
2005
, “Control System for Solid Oxide Fuel Cell Hybrid Systems,”
ASME
Paper No. GT2005-68102.
17.
Traverso
,
A.
,
Trasino
,
F.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2008
, “
Time Characterisation of the Anodic Loop of a Pressurized Solid Oxide Fuel Cell System
,”
ASME J Gas Turbines Power
,
130
(2), p.
021702
.
18.
Wächter
,
C.
, and
Fraqnz Joos
,
R. L.
,
2006
, “
Dynamic Model of a Pressurized SOFC/Gas Turbine Hybrid Power Plant for the Development of Control Concepts
,”
ASME J. Fuel Cell Sci. Technol.
,
3
(3), pp.
271
279
.
19.
Henke
,
M.
,
Monz
,
T.
, and
Aigner
,
M.
,
2016
, “
Introduction of a New Numerical Simulation Tool to Analyze Micro Gas Turbine Cycle Dynamics
,”
ASME J Gas Turbines Power
,
139
(
4
), p. 042601.
20.
Gulen
,
S. C.
, and
Kim
,
K.
,
2013
, “Gas Turbine Combined Cycle Dynamic Simulation: A Physics Based Simple Approach,”
ASME
Paper No. GT2013-94584.
21.
Rossi
,
I.
,
Sorce
,
A.
,
Traverso
,
A.
, and
Pascucci
,
F.
,
2015
, “A Simplified Hybrid Approach to Dynamic Model a Real HRSG,”
ASME
Paper No. GT2015-42654.
22.
Rossi
,
I.
,
Sorce
,
A.
, and
Traverso
,
A.
,
2017
, “
Gas Turbine Combined Cycle Start-up and Stress Evaluation: A Simplified Dynamic Approach
,”
Appl. Energy
,
190
, pp.
880
890
.
23.
Roberts
,
R.
,
Rossi
,
I.
, and
Traverso
,
A.
,
2015
, “Dynamic Simulation of Energy Systems: Comparison of a Physics-Based against Time Constant Based Approach Applied to a Microturbine Test Rig,”
ASME
Paper No. GT2015-42651.
24.
Rossi
,
I.
,
Zaccaria
,
V.
, and
Traverso
,
A.
,
2017
, “Advanced Control for Clusters of SOFC/GT Hybrid Systems,”
ASME
Paper No. GT2017-64194.
25.
Cohen
,
H.
,
Rogers
,
G. F. C.
, and
Saravanamuttoo
,
H. I. H.
,
1996
,
Gas Turbine Theory
,
4th ed.
,
Longman Group
, Harlow, UK.
You do not currently have access to this content.