After the renewed interest in supercritical carbon dioxide cycles, a large number of cycle layouts have been proposed in literature. These works, which are essentially theoretical, consider different operating conditions and modeling assumptions, and thus, the results are not comparable. There are also works that aim to provide a fair comparison between different cycles in order to assess which one is most efficient. These analyses are very interesting but, usually, they combine thermodynamic and technical restrictions, which make it difficult to draw solid and general conclusions with regard to which the cycle of choice in the future should be. With this background, the present work provides a systematic thermodynamic analysis of 12 supercritical carbon dioxide cycles under similar working conditions, with and without technical restriction in terms of pressure and/or temperature. This yields very interesting conclusions regarding the most interesting cycles in the literature. Also, useful recommendations are extracted from the parametric analysis with respect to the directions that must be followed when searching for more efficient cycles. The analysis is based on efficiency and specific work diagrams with respect to pressure ratio and turbine inlet temperature in order to enhance its applicability to plant designs driven by fuel economy and/or footprint.

References

References
1.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers. Manage.
,
8
(
2
), pp.
85
90
.
2.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
ASME J. Eng. Power
,
90
(
3
), pp.
287
295
.
3.
Ahn
,
Y.
,
Bae
,
S.
,
Kim
,
M.
,
Cho
,
S.
,
Baik
,
S.
,
Lee
,
J.
, and
Cha
,
J.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.
4.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.
5.
Held
,
T. J.
,
2014
, “
Hot Day Cycle
,” Echogen Power Systems, LLC, Akron, OH, U.S. Patent No.
US8783034 B2
.https://www.google.com/patents/US8783034
6.
Nassar
,
A.
,
Moroz
,
L.
,
Burlaka
,
M.
,
Pagur
,
P.
, and
Govoruschenko
,
Y.
,
2014
, “
Designing Supercritical CO2 Power Plants Using an Integrated Design System
,”
ASME
Paper No. GTINDIA2014-8225.
7.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2014
, “
Cycle Layout Studies of S-CO2 Cycle for the Next Generation Nuclear System Application
,”
Transactions of the Korean Nuclear Society Autumn Meeting
, Pyeongchang, South Korea, Oct. 30–31.http://koasas.kaist.ac.kr/handle/10203/211352
8.
Yantovski
,
E.
,
Zvagolsky
,
K.
, and
Gavrilenko
,
V.
,
1995
, “
The Cooperate-Demo Power Cycle
,”
Energy Convers. Manage.
,
36
(
6
), pp.
861
864
.
9.
Muto
,
Y.
,
Aritomi
,
M.
,
Ishizuka
,
T.
, and
Watanabe
,
N.
,
2014
, “
Comparison of Supercritical CO2 Gas Turbine Cycle and Brayton CO2 Gas Turbine Cycle for Solar Thermal Power Plants
,”
Fourth Supercritical CO2 Power Cycles Symposium
, Pittsburgh, PA, Sept. 9–10.http://sco2symposium.com/www2/sco2/papers2014/systemConcepts/50PPT-Muto.pdf
10.
Mathieu
,
P.
, and
Nihart
,
R.
,
1999
, “
Zero-Emission MATIANT Cycle
,”
ASME J. Eng. Gas Turbines Power
,
121
(
1
), pp.
116
120
.
11.
Zhang
,
N.
, and
Lior
,
N.
,
2006
, “
A Novel Near-Zero CO2 Emission Thermal Cycle With LNG Cryogenic Exergy Utilization
,”
Energy
,
31
(
10
), pp.
1666
1679
.
12.
Moisseytsev
,
A.
, and
Sienicki
,
J. J.
,
2009
, “
Investigation of Alternative Layouts for the Supercritical Carbon Dioxide Brayton Cycle for a Sodium-Cooled Fast Reactor
,”
Nucl. Eng. Des.
,
239
(
7
), pp.
1362
1371
.
13.
Allam
,
R. J.
,
Fetvedt
,
J. E.
,
Forrest
,
B. A.
, and
Freed
,
D. A.
,
2014
, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
ASME
Paper No. GT2014-26952.
14.
Kulhánek
,
M.
, and
Dostal
,
V.
,
2011
, “
Thermodynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles
,”
Third Supercritical CO2 Power Cycles Symposium
, Boulder, CO, May 24–25, pp.
1
7
.http://www.sco2powercyclesymposium.org/resource_center/system_concepts/thermodynamic-analysis-and-comparison-of-supercritical-carbon-dioxide-cycles
15.
McClung
,
A.
,
Brun
,
K.
, and
Chordia
,
L.
,
2014
, “
Technical and Economic Evaluation of Supercritical Oxy-Combustion for Power Generation
,”
Fourth Supercritical CO2 Power Cycles Symposium
, Pittsburgh, PA, Sept. 9–10, pp.
1
14
.http://www.sco2symposium.com/www2/sco2/papers2014/systemConcepts/40-McClung.pdf
16.
Serrano Remón
,
I. P.
,
Linares Hurtado
,
J. I.
,
Cantizano González
,
A.
, and
Moratilla Soria
,
B. Y.
,
2014
, “
Enhanced Arrangement for Recuperators in Supercritical CO2 Brayton Power Cycle for Energy Conversion in Fusion Reactors
,”
Fusion Eng. Des.
,
89
(9–10), pp.
1909
1912
.
17.
Dostal
,
V.
, and
Dostal
,
J.
,
2011
, “
Supercritical CO2 Regeneration Bypass-Cycle—Comparison to Traditional Layouts
,”
Third Supercritical CO2 Power Cycles Symposium
, Boulder, CO, May 24–25, pp.
1
5
.http://www.sco2powercyclesymposium.org/resource_center/system_concepts/supercritical-co2-regeneration-bypass-cycle-comparison-to-traditional-layouts
18.
Angelino
,
G.
,
1969
, “
Real Gas Effects in Carbon Dioxide Cycles
,”
ASME
Paper No. 69-GT-102.
19.
Tuo
,
H.
,
2011
, “
Parametric Analysis of a Reheat Carbon Dioxide Transcritical Power Cycle Using a Low Temperature Heat Source
,”
Second International Conference on Environmental Engineering and Applications
(
IPCBEE
), Shanghai, China, Aug. 19–21, pp. 33–37.http://www.ipcbee.com/vol17/7-L018.pdf
20.
Li
,
X.
,
Huang
,
H.
, and
Zhao
,
W.
,
2014
, “
A Supercritical or Transcritical Rankine Cycle With Ejector Using Low-Grade Heat
,”
Energy Convers. Manage.
,
78
, pp.
551
558
.
21.
Johnson
,
G. A.
,
McDowell
,
M. W.
,
O'Connor
,
G. M.
,
Sonwane
,
C. G.
, and
Subbaraman
,
G.
,
2012
, “
Supercritical CO2 Cycle Development at Pratt and Whitney Rocketdyne
,”
ASME
Paper No. GT2012-70105.
22.
Gatewood
,
J.
,
Moore
,
J.
,
Nored
,
M.
,
Brun
,
K.
, and
Iyengar
,
V.
,
2012
, “
The Texas Cryogenic Oxy-Fuel Cycle (TCO): A Novel Approach to Power Generation With CO2 Options
,”
ASME
Paper No. GT2012-69930.
23.
Purjam
,
M.
,
Goudarzi
,
K.
, and
Keshtgar
,
M.
,
2016
, “
A New Supercritical Carbon Dioxide Brayton Cycle With High Efficiency
,”
Heat Transfer: Asian Res.
,
46
(
5
), pp.
465
482
.
24.
Allam
,
R. J.
,
Palmer
,
M.
, and
Brown
,
G. W.
,
2013
, “
System and Method for High Efficiency Power Generation Using a Carbon Dioxide Circulating Working Fluid
,” Palmer Labs, LLC/8 Rivers Capital, LLC, Durham, NC, U.S. Patent No.
US8596075 B2
.http://www.google.co.in/patents/US8596075
25.
Padilla
,
R. V.
,
Too
,
Y. C. S.
,
Benito
,
R.
,
McNaughton
,
R.
, and
Stein
,
W.
,
2016
, “
Thermodynamic Feasibility of Alternative Supercritical CO2 Brayton Cycles Integrated With an Ejector
,”
Appl. Energy
,
169
, pp.
49
62
.
26.
Serrano
,
I.
,
Linares
,
J.
,
Cantizano
,
A.
, and
Moratilla
,
B.
,
2013
, “
A Novel Supercritical CO2 Power Cycle for Energy Conversion in Fusion Power Plants
,”
Fusion Sci. Technol.
,
64
(
3
), pp.
483
487
.
27.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
28.
Mecheri
,
M.
, and
Le Moullec
,
Y.
,
2016
, “
Supercritical CO2 Brayton Cycles for Coal-Fired Power Plants
,”
Energy
,
103
, pp.
758
771
.
29.
Schroder
,
A. U.
,
2016
, “
A Study of Power Cycles Using Supercritical Carbon Dioxide as the Working Fluid
,”
Ph.D. thesis
, University of Cincinnati, Cincinnati, OH.http://adsabs.harvard.edu/abs/2016PhDT.......350S
30.
Wilson
,
D.
,
1998
,
The Design of High-Efficiency Turbomachinery and Gas Turbines
,
Prentice-Hall
,
Upper Saddle River, NJ
.
31.
Frutschi
,
H.
,
2005
,
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
,
ASME Press
,
New York
.
32.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,” Massachusetts Institute of Technology, Cambridge, MA, Paper No.
MIT-ANP-TR-100
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.130.5385&rep=rep1&type=pdf
33.
Neises
,
T. W.
, and
Turchi
,
C. S.
,
2014
, “
Supercritical CO2 Power Cycles: Design Considerations for Concentrating Solar Power
,”
Fourth Supercritical CO2 Power Cycles Symposium
, Pittsburgh, PA, Sept. 9–10, pp.
1
8
.http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.708.3827
34.
CoolProp
,
2016
, “
Welcome to CoolProp
,” CoolProp, accessed Nov. 3, 2016, http://www.coolprop.org
35.
Nellis
,
G.
, and
Klein
,
S.
,
2009
,
Heat Transfer
,
Cambridge University Press
, New York.
36.
Hoopes
,
K.
,
Sánchez
,
D.
, and
Crespi
,
F.
,
2016
, “
A New Method for Modelling Off-Design Performance of sCO2 Heat Exchangers Without Specifying Detailed Geometry
,”
Fifth Supercritical CO2 Power Cycles Symposium
, San Antonio, TX, Mar. 28–31.http://sco2symposium.com/www2/sco2/papers2016/HeatExchanger/013pres.pdf
37.
Silvestri
,
G.
,
2003
, “
Eddystone Station, 325 MW Generating Unit, A Brief History
,”
The History and Heritage Landmarks Program
, ASME History and Heritage Committee, New York.https://www.asme.org/getmedia/97605bd2-720a-47c9-a031-80047ae8deec/226-Eddystone-Station-Unit.aspx
38.
Armor, A. F.
,
Viswanathan, R.
,
Dalton, S. M.
, and
Annendyck, H.
,
2002
, “
Ultrasupercritical Steam Turbines: Design and Material Issues for the Next Generation
,”
VGB Powertech
,
83
(10), pp. 48–53.
39.
McDonald
,
C.
,
2003
, “
Recuperator Considerations for Future Higher Efficiency Microturbines
,”
Appl. Therm. Eng.
,
23
(
12
), pp.
1463
1487
.
You do not currently have access to this content.