The hydrodynamic instability in an industrial, two-staged, counter-rotative, swirled injector of highly complex geometry is under investigation. Large eddy simulations (LES) show that the complicated and strongly nonparallel flow field in the injector is superimposed by a strong precessing vortex core (PVC). Mean flow fields of LES, validated by experimental particle image velocimetry (PIV) measurements, are used as input for both local and global linear stability analysis (LSA). It is shown that the origin of the instability is located at the exit plane of the primary injector. Mode shapes of both global and local LSA are compared to dynamic mode decomposition (DMD) based on LES snapshots, showing good agreement. The estimated frequencies for the instability are in good agreement with both the experiment and the simulation. Furthermore, the adjoint mode shapes retrieved by the global approach are used to find the best location for periodic forcing in order to control the PVC.

References

References
1.
Ghani
,
A.
,
Poinsot
,
T.
,
Gicquel
,
L. Y.
, and
Müller
,
J. D.
,
2016
, “
LES Study of Transverse Acoustic Instabilities in a Swirled Kerosene/Air Combustion Chamber
,”
Flow, Turbul. Combust.
,
96
(
1
), pp.
207
226
.
2.
Moeck
,
J. P.
,
Bourgouin
,
J.-F.
,
Durox
,
D.
,
Schuller
,
T.
, and
Candel
,
S.
,
2012
, “
Nonlinear Interaction Between a Precessing Vortex Core and Acoustic Oscillations in a Turbulent Swirling Flame
,”
Combust. Flame
,
159
(
8
), pp.
2650
2668
.
3.
Stöhr
,
M.
,
Boxx
,
I.
,
Carter
,
C. D.
, and
Meier
,
W.
,
2012
, “
Experimental Study of Vortex-Flame Interaction in a Gas Turbine Model Combustor
,”
Combust. Flame
,
159
(
8
), pp.
2636
2649
.
4.
Lessen
,
M.
,
Singh
,
P. J.
, and
Paillet
,
F.
,
1974
, “
The Stability of a Trailing Line Vortex—Part 1: Inviscid Theory
,”
J. Fluid Mech.
,
63
(
4
), pp.
753
763
.
5.
Chomaz
,
J.-M.
,
Huerre
,
P.
, and
Redekopp
,
L. G.
,
1991
, “
A Frequency Selection Criterion in Spatially Developing Flows
,”
Stud. Appl. Math.
,
84
(
2
), pp.
119
144
.
6.
Pier
,
B.
,
Huerre
,
P.
, and
Chomaz
,
J.-M.
,
2001
, “
Bifurcation to Fully Nonlinear Synchronized Structures in Slowly Varying Media
,”
Phys. D
,
148
(1–2), pp.
49
96
.
7.
Gallaire
,
F.
,
Ruith
,
M.
,
Meiburg
,
E.
,
Chomaz
,
J.-M.
, and
Huerre
,
P.
,
2006
, “
Spiral Vortex Breakdown as a Global Mode
,”
J. Fluid Mech.
,
549
, pp.
71
80
.
8.
Oberleithner
,
K.
,
Sieber
,
M.
,
Nayeri
,
C.
,
Paschereit
,
C.
,
Petz
,
C.
,
Hege
,
H.
,
Noack
,
B.
, and
Wygnanski
,
I.
,
2011
, “
Three-Dimensional Coherent Structures in a Swirling Jet Undergoing Vortex Breakdown: Stability Analysis and Empirical Mode Construction
,”
J. Fluid Mech.
,
679
(
7
), pp.
383
414
.
9.
Oberleithner
,
K.
,
Schimek
,
S.
, and
Paschereit
,
C. O.
,
2015
, “
Shear Flow Instabilities in Swirl-Stabilized Combustors and Their Impact on the Amplitude Dependent Flame Response: A Linear Stability Analysis
,”
Combust. Flame
,
162
(
1
), pp.
86
99
.
10.
Pierrehumbert
,
R. T.
, and
Widnall
,
S. E.
,
1982
, “
The Two- and Three-Dimensional Instabilities of a Spatially Periodic Shear Layer
,”
J. Fluid Mech.
,
114
, pp.
59
82
.
11.
Barkley
,
D.
,
2006
, “
Linear Analysis of the Cylinder Wake Mean Flow
,”
EPL (Europhys. Lett.)
,
75
(
5
), pp.
750
756
.
12.
Fabre
,
D.
,
Bonnefisa
,
P.
,
Charru
,
F.
,
Russo
,
S.
,
Citro
,
V.
,
Giannetti
,
F.
, and
Luchini
,
P.
,
2014
, “
Application of Global Stability Approaches to Whistling Jets and Wind Instruments
,” International Symposium on Musical Acoustics (
ISMA
), Le Mans, France, July 7–12, pp. 23–28.https://www.imft.fr/IMG/pdf/H000021.pdf
13.
Juniper
,
M. P.
, and
Pier
,
B.
,
2015
, “
The Structural Sensitivity of Open Shear Flows Calculated With a Local Stability Analysis
,”
Eur. J. Mech.-B/Fluids
,
49
(Pt. B), pp.
426
437
.
14.
Tammisola
,
O.
, and
Juniper
,
M.
,
2016
, “
Coherent Structures in a Swirl Injector at Re = 4800 by Nonlinear Simulations and Linear Global Modes
,”
J. Fluid Mech.
,
792
, pp.
620
657
.
15.
Reynolds
,
W.
, and
Hussain
,
A.
,
1972
, “
The Mechanics of an Organized Wave in Turbulent Shear Flow—Part 3: Theoretical Models and Comparisons With Experiments
,”
J. Fluid Mech.
,
54
(
2
), pp.
263
288
.
16.
Rukes
,
L.
,
Paschereit
,
C. O.
, and
Oberleithner
,
K.
,
2016
, “
An Assessment of Turbulence Models for Linear Hydrodynamic Stability Analysis of Strongly Swirling Jets
,”
Eur. J. Mech.-B/Fluids
,
59
, pp.
205
218
.
17.
Ivanova
,
E. M.
,
Noll
,
B. E.
, and
Aigner
,
M.
,
2012
, “
A Numerical Study on the Turbulent Schmidt Numbers in a Jet in Crossflow
,”
ASME J. Eng. Gas Turbines Power
,
135
(
1
), p.
011505
.
18.
Theofilis
,
V.
,
2011
, “
Global Linear Instability
,”
Annu. Rev. Fluid Mech.
,
43
, pp.
319
352
.
19.
Hecht
,
F.
,
2012
, “
New Development in FreeFem++
,”
J. Numer. Math.
,
20
(
3–4
), pp.
251
265
.
20.
Lehoucq
,
R.
,
Sorensen
,
D.
, and
Yang
,
C.
,
1997
,
Arpack Users' Guide: Solution of Large Scale Eigenvalue Problems With Implicitly Restarted Arnoldi Methods
, SIAM, Philadelphia, PA.
21.
Paredes
,
P.
,
Hermanns
,
M.
,
Le Clainche
,
S.
, and
Theofilis
,
V.
,
2013
, “
Order 10 4 Speedup in Global Linear Instability Analysis Using Matrix Formation
,”
Comput. Methods Appl. Mech. Eng.
,
253
, pp.
287
304
.
22.
Giannetti
,
F.
, and
Luchini
,
P.
,
2007
, “
Structural Sensitivity of the First Instability of the Cylinder Wake
,”
J. Fluid Mech.
,
581
, pp.
167
197
.
23.
Orszag
,
S. A.
,
1971
, “
Accurate Solution of the Orr–Sommerfeld Stability Equation
,”
J. Fluid Mech.
,
50
(
4
), pp.
689
703
.
24.
Monkewitz
,
P. A.
,
Huerre
,
P.
, and
Chomaz
,
J.-M.
,
1993
, “
Global Linear Stability Analysis of Weakly Non-Parallel Shear Flows
,”
J. Fluid Mech.
,
251
, pp.
1
20
.
25.
Bers
,
A.
,
1983
, “
Space-Time Evolution of Plasma Instabilities-Absolute and Convective
,”
Basic Plasma Phys.
,
1
, pp.
451
517
.https://inis.iaea.org/search/search.aspx?orig_q=RN:15068895
26.
Briggs
,
R. J.
,
1964
, “
Electron-Stream Interaction With Plasmas
,”
Science
,
148
(
3676
), pp.
1453
1454
.
27.
Poinsot
,
T.
,
2005
,
The AVBP Handbook
,
CERFACS
,
Toulouse, France
.
28.
Colin
,
O.
, and
Rudgyard
,
M.
,
2000
, “
Development of High-Order Taylor-Galerkin Schemes for LES
,”
J. Comput. Phys.
,
162
(
2
), pp.
338
371
.
29.
Nicoud
,
F.
,
Toda
,
H. B.
,
Cabrit
,
O.
,
Bose
,
S.
, and
Lee
,
J.
,
2011
, “
Using Singular Values to Build a Subgrid-Scale Model for Large Eddy Simulations
,”
Phys. Fluids
,
23
(
8
), p.
085106
.
30.
Schmid
,
P. J.
,
2010
, “
Dynamic Mode Decomposition of Numerical and Experimental Data
,”
J. Fluid Mech.
,
656
, pp.
5
28
.
31.
Juniper
,
M. P.
,
Tammisola
,
O.
, and
Lundell
,
F.
,
2011
, “
The Local and Global Stability of Confined Planar Wakes at Intermediate Reynolds Number
,”
J. Fluid Mech.
,
686
, pp.
218
238
.
You do not currently have access to this content.